• Title/Summary/Keyword: microbial strain

Search Result 617, Processing Time 0.037 seconds

Molecular Cloning and the Nucleotide Sequence of a Bacillus sp. KK-l $\beta$-Xylosidase Gene

  • Chun, Yong-Chin;Jung, Kyung-Hwa;Lee, Jae-Chan;Park, Seung-Hwan;Chung, Ho-Kwon;Yoon, Ki-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.28-33
    • /
    • 1998
  • A gene coding for ${\beta}$-xylosidase from thermophilic xylanolytic Bacillus sp. KK-1 was cloned into Escherichia coli using plasmid pBR322. Recombinant plasmid DNAs were isloated from E. coli clones which were capable of hydrolyzing 4-methylumbelliferyl-${\beta}$-D xylopyranoside. Restriction analysis showed the DNAs to share a common insert DNA. Xylo-oligosaccharides, including xylotriose, xylotetraose, xylopentaose, and xylobiose were hydrolyzed to form xylose as an end product by cell-free extracts of the E. coli clones, confirming that the cloned gene from strain KK-1 is ${\beta}$-xylosidase gene. The ${\beta}$-xylosidase gene of strain KK-1 designated as xylB was completely sequenced. The xylB gene consisted of an open reading frame of 1,602 nucleotides encoding a polypeptide of 533 amino acid residues, and a TGA stop codon. The 3' flanking region contained one stem-loop structure which may be involved in transcriptional termination. The deduced amino acid sequence of the KK-1 ${\beta}$-xylosidase was highly homologous to the ${\beta}$-xylosidases of Bacillus subtilis and Bacillus pumilus, but it showed no similarity to a thermostable ${\beta}$-xylosidase from Bacillus stearothermophilus.

  • PDF

Screening of Thermotolerant Yeast for Use as Microbial Feed Additive

  • Lee, Jae-Heung;Lim, Yoo-Beom;Koh, Jong-ho;Baig, Soon-Yong;Shin, Hyung-Tai
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.162-165
    • /
    • 2002
  • With the objective of identifying the commercial potential of new direct-fed microbials, several temperature-tolerant strains were isolated from cane molasses at $39^{\circ}C$ and tested for their tolerance to pH, bile salts, and a mixture of volatile fatty acids (acetic acid:propionic acid:butyric acid=6.5:2.0:1.5). It was found that the isolated strain DY 252 grew very well up to pH 2.0 and was resistant to relatively high concentrations of bile salts. Among the strains tested, DY 252 was least inhibited by the addition of volatile fatty acids to the growth medium at $39^{\circ}C$. Accordingly, it would appear that strain DY 252, identified as yeast Issatchenkia orientalis, may be a potential candidate for use as a microbial feed additive.

Degradation of Phenanthrene by Bacterial Strains Isolated from Soil in Oil Refinery Fields in Korea

  • KIM JEONG DONG;SHIM SU HYEUN;LEE CHOUL GYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.337-345
    • /
    • 2005
  • The degradation of phenanthrene, a model PAH compound, by microorganisms either in the mixed culture or individual strain, isolated from oil-contaminated soil in oil refmery vicinity sites, was examined. The effects of pH, temperature, initial concentration of phenanthrene, and the addition of carbon sources on biodegradation potential were also investigated. Results showed that soil samples collected from four oil refinery sites in Korea had different degrees of PAH contamination and different indigenous phenanthrene-degrading microorganisms. The optimal conditions for phenanthrene biodegradation were determined to be 30$^{circ}C$ and pH 7.0. A significantly positive relationship was observed between the microbial growth and the rate of phenanthrene degradation. However, the phenanthrene biodegradation capability of the mixed culture was not related to the degree of PAH contamination in soil. In low phenanthrene concentration, the growth and biodegradation rates of the mixed cultures did not increase over those of the individual strain, especially IC10. High concentration of phenanthrene inhibited the growth of microbial strains and biodegradation of phenanthrene, but was less inhibitory on the mixed culture. Finally, when non-ionic surfactants such as Brij 30 and Brij 35 were present at the level above critical micelle concentrations (CMCs), phenanthrene degradation was completely inhibited and delayed by the addition of Triton X100 and Triton N101.

Overexpression of YbeD in Escherichia coli Enhances Thermotolerance

  • Kim, Sinyeon;Kim, Youngshin;Yoon, Sung Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.401-409
    • /
    • 2019
  • Heat-resistant microbial hosts are required for bioprocess development using high cell density cultivations at the industrial scale. We report that the thermotolerance of Escherichia coli can be enhanced by overexpressing ybeD, which was known to encode a hypothetical protein of unknown function. In the wild-type E. coli BL21(DE3), ybeD transcription level increased over five-fold when temperature was increased from $37^{\circ}C$ to either $42^{\circ}C$ or $46^{\circ}C$. To study the function of ybeD, a deletion strain and an overexpression strain were constructed. At $46^{\circ}C$, in comparison to the wild type, the ybeD-deletion reduced cell growth half-fold, and the ybeD-overexpression promoted cell growth over two-fold. The growth enhancement by ybeD-overexpression was much more pronounced at $46^{\circ}C$ than $37^{\circ}C$. The ybeD-overexpression was also effective in other E. coli strains of MG1655, W3110, DH10B, and BW25113. These findings reveal that ybeD gene plays an important role in enduring high-temperature stress, and that ybeD-overexpression can be a prospective strategy to develop thermotolerant microbial hosts.

Enhanced Lycopene Production by UV-C Irradiation in Radiation-Resistant Deinococcus radiodurans R1

  • Kang, Chang Keun;Yang, Jung Eun;Park, Hae Woong;Choi, Yong Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1937-1943
    • /
    • 2020
  • Although classical metabolic engineering strategies have succeeded in developing microbial strains capable of producing desired bioproducts, metabolic imbalance resulting from extensive genetic manipulation often leads to decreased productivity. Thus, abiotic strategies for improving microbial production performance can be an alternative to overcome drawbacks arising from intensive metabolic engineering. Herein, we report a promising abiotic method for enhancing lycopene production by UV-C irradiation using a radiation-resistant ΔcrtLm/crtB+dxs+ Deinococcus radiodurans R1 strain. First, the onset of UV irradiation was determined through analysis of the expression of 11 genes mainly involved in the carotenoid biosynthetic pathway in the ΔcrtLm/crtB+dxs+ D. radiodurans R1 strain. Second, the effects of different UV wavelengths (UV-A, UV-B, and UV-C) on lycopene production were investigated. UV-C irradiation induced the highest production, resulting in a 69.9% increase in lycopene content [64.2 ± 3.2 mg/g dry cell weight (DCW)]. Extended UV-C irradiation further enhanced lycopene content up to 73.9 ± 2.3 mg/g DCW, a 95.5% increase compared to production without UV-C irradiation (37.8 ± 0.7 mg/g DCW).

Cloning, Expression, and Characterization of Protease-resistant Xylanase from Streptomyces fradiae var. k11

  • Li, Ning;Yang, Peilong;Wang, Yaru;Luo, Huiying;Meng, Kun;Wu, Nigfeng;Fan, Yunliu;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.410-416
    • /
    • 2008
  • The gene SfXyn10, which encodes a protease-resistant xylanase, was isolated using colony PCR screening from a genomic library of a feather-degrading bacterial strain Streptomyces fradiae var. k11. The full-length gene consists of 1,437bp and encodes 479 amino acids, which includes 41 residues of a putative signal peptide at its N terminus. The amino acid sequence shares the highest similarity (80%) to the endo-1,4-${\beta}$-xylanase from Streptomyces coelicolor A3, which belongs to the glycoside hydrolase family 10. The gene fragment encoding the mature xylanase was expressed in Escherichia coli BL21 (DE3). The recombinant protein was purified to homogeneity by acetone precipitation and anion-exchange chromatography, and subsequently characterized. The optimal pH and temperature for the purified recombinant enzyme were 7.8 and $60^{\circ}C$, respectively. The enzyme showed stability over a pH range of 4.0-10.0. The kinetic values on oat spelt xylan and birchwood xylan substrates were also determined. The enzyme activity was enhanced by $Fe^{2+}$ and strongly inhibited by $Hg^{2+}$ and SDS. The enzyme also showed resistance to neutral and alkaline proteases. Therefore, these characteristics suggest that SfXyn10 could be an important candidate for protease-resistant mechanistic research and has potential applications in the food industry, cotton scouring, and improving animal nutrition.

Culture-Independent Methods of Microbial Community Structure Analysis and Microbial Diversity in Contaminated Groundwater with Major Pollutants (주요 오염물질로 오염된 지하수에서 미생물의 무배양식 군집분석방법과 미생물상에 대한 조사방법 연구)

  • Kim Jai-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.66-77
    • /
    • 2006
  • This review inquired the recently applied molecular biological and biochemical methods analyzing the microbial community structure of groundwater and, as a result, summarized the functional or taxonomic groups of active microorganisms with major contaminants in groundwater. The development of gene amplification through PCR has been possible to figure out microbial population and identification. Active microbial community structures have been analyzed using a variety of fingerprinting techniques such as DGGE, SSCP, RISA, and microarray and fatty acid analyses such as PLFA and FAME, and the activity of a specific strain has been examined using FISH. Also, this review included the dominant microflora in groundwater contaminated with fuel components such as n-alkanes, BTEX, MTBE, and ethanol and chlorinated compounds such as TCE, PCE, PCB, CE, carbon tetrachloride, and chlorobenzene.

Isolation and Characterization of Potential Starter Yeasts from Traditional Moroccan Sourdoughs

  • Aouine, Mouna;Misbah, Asmae;Elabed, Soumya;Haggoud, Abdelatif;Mohammed, Iraqui Houssaini;Koraichi, Saad Ibnsouda
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.501-509
    • /
    • 2021
  • The increasing demand for baked products has given a boost to research on isolation and selection of novel yeast strains with improved leavening activity. Twelve sourdough samples were collected from several localities of the Fez region in Morocco. The pH and total titratable acidity (TTA) values of these samples varied from 3.03-4.63 and 14-17.5 ml of 0.1 N NaOH/10 g of sourdough, respectively, while yeast counts ranged from 5.3 6.77 Log CFU/g. Thirty-two yeast isolates were obtained and evaluated for their leavening ability. Out of all isolates, four yeasts molecularly identified as Saccharomyces cerevisiae (three strains) and Kluyveromyces marxianus (one strain) showed highest specific volumes of 4.69, 4.55, 4.35 and 4.1 cm3/g, respectively. These strains were further assessed for their tolerance to high concentrations of salt, sugar, elevated temperatures, and low pH conditions. K. marxianus showed higher resistance than the S. cerevisiae. Thus, Moroccan sourdoughs harbor technologically relevant yeasts that could be used as potential starters for bread preparation.

Isolation and Phylogenetic Characteristics of Exopolysaccharide Producing Bacteria in a Rhizosphere Soil of Medicinal Herbs (약초 근권토양 내 다당 생성세균 분리 및 계통학적 특성)

  • Lee, Hae-Ran;Kim, Ki-Kwhang;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.278-285
    • /
    • 2010
  • We examined the distribution of exopolysaccharide (EPS) producing bacteria population in rhizosphere soils of domestic medicinal herbs; Angelica sinensis, Atractytodes japonica, Achyranthes japonica, Anemarrhena asphodeloides, and Astragalus membranaceus. Fifty-six percent of the total isolates from rhizosphere soil of Angelica sinensis were EPS producing bacteria, suggesting the dominance of EPS producing bacteria in rhizosphere soil of Angelica sinensis. EPS producing bacteria were enumerated in root system (rhizosphere soil, rhizoplane, inside of root) of Angelica sinensis. Bacterial density of rhizosphere soil, rhizoplane, and inside of root were distributed $9.0{\times}10^6CFU/g{\cdot}soil$, $7.0{\times}10^6CFU/g{\cdot}soil$, and $1.4{\times}10^3CFU/g{\cdot}soil$, respectively. EPS producing bacteria from rhizosphere soil were categorized into five major phylogenetic groups: Alphaproteobacteria (4 strains), Betaproteobacteria (6 strains), Firmicutes (2 strains), Actinobacteria (3 strains), and Bacteroidetes (1 strain) subdivisions. Also, the EPS producing isolates from rhizoplane were distributed as 7 strains in Alphaproteobacteria, 3 strains in Betaproteobacteria, 2 strains in Actinobacteria, 3 strains in Bacteroidetes, and 1 strain in Acidobacteria subdivisions. All of the EPS producing bacteria inside of root belong to genus Chitinophaga. Burkholderia caribiensis DR14, Terriglobus sp. DRP35, and Rhizobium hainanense SAP110 were selected in 112 EPS producing bacteria. These appeared to have produced high levels of exopolysaccharide 6,555 mpa.s, 3,275 mpa.s, and 1,873 mpa.s, respectively. The purified EPS was analyzed Bio-LC. As neutral sugars, glucose, galactose, mannose were detected and as amino sugars, galactosamine and glucosamine were detected. Especilally, analysis of Bio-LC showed that Rhizobium hainanense SAP110 produced glucose (60~89%) and glucosamine (8.5%) as major neutral sugar and amino sugar, respectively.

Gene Cloning of Streptomyces Phospholipase D P821 Suitable for Synthesis of Phosphatidylserine

  • Moon Min-Woo;Lee Jung-Kee;Oh Tae-Kwang;Shin Chul-Soo;Kim Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.408-413
    • /
    • 2006
  • A strain, P821, with phospholipase D activity was isolated from soil and identified as a Streptomyces species. The phospholipase D enzyme was purified from a culture broth of the isolated strain using ammonium sulfate precipitation and DEAE-Sepharose, phenyl-Sepharose, and Superose 12 HR column chromatographies. The purified enzyme exhibited an optimum temperature and pH of $55^{\circ}C$ and 6.0, respectively, in the hydrolysis of phosphatidylcholine and remained stable up to $60^{\circ}C$ within a pH range of 3.5-8.0. The enzyme also catalyzed a transphosphatidylation reaction to produce phosphatidylserine with phosphatidylcholine and serine substrates. The optimum conditions for the transphosphatidylation were $30^{\circ}C$ and pH 5.0, indicating quite different optimum conditions for the hydrolysis and transphosphatidylation reactions. The gene encoding the enzyme was cloned by Southern hybridization and colony hybridization using a DNA probe designed from the conserved regions of other known phospholipase D enzymes. The resulting amino acid sequence was most similar to that of the PLD enzyme from Streptomyces halstedii (89.5%). Therefore, the enzyme was confirmed to be a phospholipase D with potential use in the production of phosphatidylserine.