Browse > Article
http://dx.doi.org/10.4014/jmb.1901.01036

Overexpression of YbeD in Escherichia coli Enhances Thermotolerance  

Kim, Sinyeon (Department of Bioscience and Biotechnology, Konkuk University)
Kim, Youngshin (Department of Bioscience and Biotechnology, Konkuk University)
Yoon, Sung Ho (Department of Bioscience and Biotechnology, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.3, 2019 , pp. 401-409 More about this Journal
Abstract
Heat-resistant microbial hosts are required for bioprocess development using high cell density cultivations at the industrial scale. We report that the thermotolerance of Escherichia coli can be enhanced by overexpressing ybeD, which was known to encode a hypothetical protein of unknown function. In the wild-type E. coli BL21(DE3), ybeD transcription level increased over five-fold when temperature was increased from $37^{\circ}C$ to either $42^{\circ}C$ or $46^{\circ}C$. To study the function of ybeD, a deletion strain and an overexpression strain were constructed. At $46^{\circ}C$, in comparison to the wild type, the ybeD-deletion reduced cell growth half-fold, and the ybeD-overexpression promoted cell growth over two-fold. The growth enhancement by ybeD-overexpression was much more pronounced at $46^{\circ}C$ than $37^{\circ}C$. The ybeD-overexpression was also effective in other E. coli strains of MG1655, W3110, DH10B, and BW25113. These findings reveal that ybeD gene plays an important role in enduring high-temperature stress, and that ybeD-overexpression can be a prospective strategy to develop thermotolerant microbial hosts.
Keywords
ybeD; Escherichia coli; heat shock protein; thermotolerance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kozlov G, Elias D, Semesi A, Yee A, Cygler M, Gehring K. 2004. Structural similarity of YbeD protein from Escherichia coli to allosteric regulatory domains. J. Bacteriol. 186: 8083-8088.   DOI
2 Yoon SH, Jeong H, Kwon S-K, Kim JF. 2009. Genomics, biological features, and biotechnological applications of Escherichia coli B: "Is B for better?!", pp. 1-17. Systems Biology and Biotechnology of Escherichia coli, Ed. Springer, Berlin, Germany
3 Choi JH, Keum KC, Lee SY. 2006. Production of recombinant proteins by high cell density culture of Escherichia coli Chem. Eng. Sci. 61: 876-885.   DOI
4 Studier FW, Moffatt BA. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113-130.   DOI
5 Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645.   DOI
6 Kim SK, Lee DH, Kim OC, Kim J F, Yoon SH. 2017. Tunable control of an Escherichia coli expression system for the overproduction of membrane proteins by titrated expression of a mutant lac repressor. ACS Synth. Biol. 6: 1766-1773.   DOI
7 Chen IA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, et al. 2017. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 45: D507-d516.   DOI
8 Kim S, Jeong H, Kim EY, Kim JF, Lee SY, Yoon SH. 2017. Genomic and transcriptomic landscape of Escherichia coli BL21(DE3). Nucleic Acids Res. 45: 5285-5293.   DOI
9 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}C_T}$ Method. Methods 25: 402-408.   DOI
10 Schagger H. 2006. Tricine-SDS-PAGE. Nat. Protoc. 1: 16-22.   DOI
11 Durfee T, Nelson R, Baldwin S, Plunkett G, 3rd, Burland V, Mau B, et al. 2008. The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J. Bacteriol. 190: 2597-2606.   DOI
12 Bukau B, Walker GC. 1989. Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J. Bacteriol. 171: 2337-2346.   DOI
13 Teleha MA, Miller AC, Larsen RA. 2013. Overexpression of the Escherichia coli TolQ protein leads to a null-FtsN-like division phenotype. Microbiologyopen 2: 618-632.   DOI
14 Herendeen SL, VanBogelen RA, Neidhardt FC. 1979. Levels of major proteins of Escherichia coli during growth at different temperatures. J. Bacteriol. 139: 185-194.   DOI
15 Ron EZ, Davis BD. 1971. Growth rate of Escherichia coli at elevated temperatures: limitation by methionine. J. Bacteriol. 107: 391-396.   DOI
16 Fayet O, Ziegelhoffer T, Georgopoulos C. 1989. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J. Bacteriol. 171: 1379-1385.   DOI
17 Ron EZ, Shani M. 1971. Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine trans-succinylase. J. Bacteriol. 107: 397-400.   DOI
18 Jordan SW, Cronan JE, Jr. 2003. The Escherichia coli lipB gene encodes lipoyl (octanoyl)-acyl carrier protein:protein transferase. J. Bacteriol. 185: 1582-1589.   DOI
19 Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2: 2006 0008.
20 Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, et al. 1999. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97: 755-765.   DOI
21 Wick LM, Egli T. 2004. Molecular components of physiological stress responses in Escherichia coli. Adv. Biochem. Eng. Biotechnol. 89: 1-45.
22 Wagner S, Baars L, Ytterberg AJ, Klussmeier A, Wagner CS, Nord O, et al. 2007. Consequences of membrane protein overexpression in Escherichia coli. Mol. Cell. Proteomics 6: 1527-1550.   DOI
23 Gross CA. 1996. Function and regulation of the heat shock proteins, pp. 1382-1399. In Neidhardt FC (ed.), Escherichia coli and Salmonella, Ed. ASM Press, Washington.
24 Ezemaduka AN, Yu J, Shi X, Zhang K, Yin CC, Fu X, et al. 2014. A small heat shock protein enables Escherichia coli to grow at a lethal temperature of $50^{\circ}C$ conceivably by maintaining cell envelope integrity. J. Bacteriol. 196: 2004-2011.   DOI
25 Liu D, Lu Z, Mao Z, Liu S. 2009. Enhanced thermotolerance of E. coli by expressed OsHsp90 from rice (Oryza sativa L.). Curr. Microbiol. 58: 129-133.   DOI
26 Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodriguez-Carmona E, Baumann K, et al. 2008. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb. Cell Fact. 7: 11.   DOI
27 Zhang X, Liu Y, Genereux JC, Nolan C, Singh M, Kelly JW. 2014. Heat-shock response transcriptional program enables high-yield and high-quality recombinant protein production in Escherichia coli. ACS Chem. Biol. 9: 1945-1949.   DOI
28 Arsene F, Tomoyasu T, Bukau B. 2000. The heat shock response of Escherichia coli. Int. J. Food Microbiol. 55: 3-9.   DOI
29 Martinez-Alonso M, Garcia-Fruitos E, Ferrer-Miralles N, Rinas U, Villaverde A. 2010. Side effects of chaperone gene co-expression in recombinant protein production. Microb. Cell Fact. 9: 64.   DOI
30 Kolaj O, Spada S, Robin S, Wall JG. 2009. Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb. Cell Fact. 8: 9.   DOI
31 Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, et al. 2008. Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9: 102.   DOI
32 Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA. 2006. Regulon and promoter analysis of the E. coli heatshock factor, ${\sigma}^{32}$, reveals a multifaceted cellular response to heat stress. Genes Dev. 20: 1776-1789.   DOI
33 Shimada T, Tanaka K, Ishihama A. 2017. The whole set of the constitutive promoters recognized by four minor sigma subunits of Escherichia coli RNA polymerase. PLoS One 12: e0179181.   DOI
34 Peabody MA, Laird MR, Vlasschaert C, Lo R, Brinkman F S. 2016. PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures. Nucleic Acids Res. 44: D663-668.   DOI