Browse > Article

Isolation and Phylogenetic Characteristics of Exopolysaccharide Producing Bacteria in a Rhizosphere Soil of Medicinal Herbs  

Lee, Hae-Ran (Department of Microbial & Nano Materials, Mokwon University)
Kim, Ki-Kwhang (Department of Microbial & Nano Materials, Mokwon University)
Whang, Kyung-Sook (Department of Microbial & Nano Materials, Mokwon University)
Publication Information
Korean Journal of Microbiology / v.46, no.3, 2010 , pp. 278-285 More about this Journal
Abstract
We examined the distribution of exopolysaccharide (EPS) producing bacteria population in rhizosphere soils of domestic medicinal herbs; Angelica sinensis, Atractytodes japonica, Achyranthes japonica, Anemarrhena asphodeloides, and Astragalus membranaceus. Fifty-six percent of the total isolates from rhizosphere soil of Angelica sinensis were EPS producing bacteria, suggesting the dominance of EPS producing bacteria in rhizosphere soil of Angelica sinensis. EPS producing bacteria were enumerated in root system (rhizosphere soil, rhizoplane, inside of root) of Angelica sinensis. Bacterial density of rhizosphere soil, rhizoplane, and inside of root were distributed $9.0{\times}10^6CFU/g{\cdot}soil$, $7.0{\times}10^6CFU/g{\cdot}soil$, and $1.4{\times}10^3CFU/g{\cdot}soil$, respectively. EPS producing bacteria from rhizosphere soil were categorized into five major phylogenetic groups: Alphaproteobacteria (4 strains), Betaproteobacteria (6 strains), Firmicutes (2 strains), Actinobacteria (3 strains), and Bacteroidetes (1 strain) subdivisions. Also, the EPS producing isolates from rhizoplane were distributed as 7 strains in Alphaproteobacteria, 3 strains in Betaproteobacteria, 2 strains in Actinobacteria, 3 strains in Bacteroidetes, and 1 strain in Acidobacteria subdivisions. All of the EPS producing bacteria inside of root belong to genus Chitinophaga. Burkholderia caribiensis DR14, Terriglobus sp. DRP35, and Rhizobium hainanense SAP110 were selected in 112 EPS producing bacteria. These appeared to have produced high levels of exopolysaccharide 6,555 mpa.s, 3,275 mpa.s, and 1,873 mpa.s, respectively. The purified EPS was analyzed Bio-LC. As neutral sugars, glucose, galactose, mannose were detected and as amino sugars, galactosamine and glucosamine were detected. Especilally, analysis of Bio-LC showed that Rhizobium hainanense SAP110 produced glucose (60~89%) and glucosamine (8.5%) as major neutral sugar and amino sugar, respectively.
Keywords
exopolysaccharide; medicinal herb; rhizosphere soil;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Zevenhuizen, L.P.T.M. and A.R.W. van Neerven. 1983. Gelforming capsular polysaccharide of Rhizobium leguminosarum and Rhizobium trifolii. Carbohydr. Res. 124, 166-171.   DOI   ScienceOn
2 Thomson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI   ScienceOn
3 Vanhaverbeke, C., A. Heyraud, W. Achouak, and T. Heulin. 2001. Structural analysis of the exopolysaccharide from Burkholderia caribensis strain MWAP71. Carbohydr. Res. 334, 127-133.   DOI   ScienceOn
4 Whang, K.S., S.H. Choi, and S.I. Han. 2007. Isolation and characterization of high viscosity polysaccharide producing endophytic bacteria from Pueraria root. Kor. J. Microbiol. 43, 341-345.   과학기술학회마을
5 Park, Y.I. 2000. Structures and functions of microbial extracellular or wall polysaccharides in the physiology of producer organisms. The Microorganisms and Industry 26, 18-30.
6 Ruas-Madiedo, P., J. Hugenholtz, and P. Zoon. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 12, 163-171.   DOI   ScienceOn
7 Mendrygal, K.E. and J.E. Gonzalez. 2000. Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol. 182, 599-606.   DOI   ScienceOn
8 Serrato, R.V., G.L. Sassaki, P.A.J. Gorin, L.M. Cruz, F.O. Pedrosa, B. Choudhury, R.W. Carlson, and M. Iacomini. 2008. Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica. Carbohyd. Polym. 73, 1-4.   DOI   ScienceOn
9 Saitou, N. and N. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
10 Santaella, C., M. Schue, O. Berge, T. Heulin, and W. Achouak. 2008. The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ. Microbiol. 10, 2150-2163.   DOI   ScienceOn
11 Skorupska, A., M. Janczarek, M. Marczak, A. Mazur, and J. Krol. 2006. Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb. Cell Fact. 5, 1-7.   DOI
12 Mozzi, F., F. Vaningelgem, E.M. Hebert, R.V. der Meulen, M.R.F. Moreno, G.F. de Valdez, and L. De Vuyst. 2006. Diversity of heteropolysaccharide producing lactic acid bacterium strains and their biopolymers. Appl. Environ. Microbiol. 72, 4431-4435.   DOI   ScienceOn
13 Ji, P., M. Wilson, H.L. Campbell, and J.W. Kloepper. 1997. Rhizobacterial mediated induced systemic resistance for the control of bacterial speck of fresh-market tomato. pp. 273-276. In A. Ogoshi, K. Kobauashi, Y. Homma, F. Kodama, N. Kondo, and S, Akino (eds.), plant growth-promoting Rhizobacteria: present status and future prospects. Nakanishi printing, Sapporo, Japan.
14 Goubet, F., P. Jackson, M.J. Deery, and P. Dupree. 2002. Polysaccharide analysis using carbohydrate gel electrophoresis: a method to study plant cell wall polysaccharide and polysaccharide hydrolyses. Anal. Biochem. 300, 54-68.
15 Han, J., D. Xia, L. Li, L. Sun, K. Yang, and L. Zhang. 2009. Diversity of culturable bacteria isolated from root domains of moso Bamboo (Phyllostachys edulis). Microb. Ecol. 58, 363-373.   DOI   ScienceOn
16 Diaz, K., C. Valiente, M. Martinez, M. Castillo, and E. Sanfuentes. 2009. Root-promoting rhizobacteria in Eucalyptus globulus cuttings. World J. Microbiol. Biotechnol. 25, 867-873.   DOI   ScienceOn
17 Alami, Y., W. Achouak, C. Marol, and T. Heulin. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 66, 3393-3398.   DOI   ScienceOn
18 Amellal, N., G. Burtin, F. Bartoli, and T. Heulin. 1998. Colonization of wheat roots by an exopolysaccharide-producing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Appl. Environ. Microbiol. 64, 3740-3747.
19 Atlas, R.M. and R. Bartha. 1998. Interactions between microorganisms and plants. 99-140. Microbial. Ecology. 4th. Benjamin- Cummings Publishing Company, USA.
20 De Vuyst, L. and B. Degeest. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23, 153-177.   DOI
21 Muleta, D., F. Assefa, K. Hjort, S. Roos, and U. Granhall. 2009. Characterization of rhizobacteria isolated from wild coffee arabica L. Eng. Life Sci. 9, 100-108.   DOI   ScienceOn
22 Lim, Y.S. and S.K. Lee. 2009. Characteristics of exopolysaccharide produced in goat milk yogurt cultured with Streptococcus thermophilus LFG isolated from kefir. Kor. J. Food. Sci. Ani. Resour. 29, 143-150.   과학기술학회마을   DOI
23 Koo, S.Y. and K.S. Cho. 2006. Interactions between plants rhizobacteria in phytoremediation of heavy metal contaminated soil. Kor. J. Microbiol. Biotechnol. 34, 83-93.   과학기술학회마을   DOI   ScienceOn
24 Lucy, M., E. Reed, and B.R. Glinck. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek. 86, 1-25.   DOI
25 Margaritis, A. and G.W. Pace. 1985. Microbial polysaccharides, 1005-1044. In H.W. Blanch, S. Drew, and D.I.C. Wang (eds.). Comprehensive biotechnology. 3. Pergamon Press. Oxford, USA.
26 Kim, H.J. and H.C. Jang. 2006. Isolation and characterization of exopolysaccharide producing lactic acid bacteria from Kimchi. Kor. J. Microbiol. Biotechnol. 34, 196-203.   과학기술학회마을
27 Jesus, C.M., M.A. Lourdes, P.V. Guadalupe, and E.D. Paulina. 2004. Budkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int. J. Syst. Evol. Microbiol. 54, 1165-1172.   DOI   ScienceOn
28 Laws, A.P., M.J. Chadha, M. Chacon-Romero, V.M. Marshall, and M. Maqsood. 2008. Determination of the structure and molecular weights of the exopolysaccharide produced by Lactobacillus acidophilus 5e2 when grown on different carbon feeds. Carbohydr. Res. 343, 301-307.   DOI   ScienceOn
29 Kacia, Y., A. Heyraudb, M. Barakatc, and T. HeulinKaci. 2005. Isolation and identification of an EPS-producing Rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Res. Microbiol. 156, 522-531.   DOI   ScienceOn
30 Khalid, A., M. Arshad, and Z.A. Zahir. 2004. Screening plant growth-promoting rhizobacteia for improving growth and yield of wheat. J. Appl. Microbiol. 96, 473-480.   DOI   ScienceOn
31 Park, M., C. Kim, J. Yang, H. Lee, W. Shin, S. Kim, and T. Sa. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res. 160, 127-133.   DOI   ScienceOn
32 Park, D.H., M.J. Kim, H.N. Seo, T.S. Hwang, and S.H. Lee. 2008. Characterization of exopolysaccharide (EPS) produced by Weissella hellenica SKKimchi3 isolated from kimchi. Kor. J. Microbiol. 46, 535-541.   DOI   ScienceOn
33 Park, K.S., J.W. Klopper, and C.M. Ryu. 2008. Rhizobacterial exopolysaccharide elicit induced resistance on cucumber. J. Microbiol. Biotechnol. 18, 1095-1100.   과학기술학회마을