• 제목/요약/키워드: microbial production

검색결과 1,749건 처리시간 0.026초

Overexpression of afsR and Optimization of Metal Chloride to Improve Lomofungin Production in Streptomyces lomondensis S015

  • Wang, Wei;Wang, Huasheng;Hu, Hongbo;Peng, Huasong;Zhang, Xuehong
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.672-680
    • /
    • 2015
  • As a global regulatory gene in Streptomyces, afsR can activate the biosynthesis of many secondary metabolites. The effect of afsR on the biosynthesis of a phenazine metabolite, lomofungin, was studied in Streptomyces lomondensis S015. There was a 2.5-fold increase of lomofungin production in the afsR-overexpressing strain of S. lomondensis S015 N1 compared with the wild-type strain. Meanwhile, the transcription levels of afsR and two important genes involved in the biosynthesis of lomofungin (i.e., phzC and phzE) were significantly upregulated in S. lomondensis S015 N1. The optimization of metal chlorides was investigated to further increase the production of lomofungin in the afsR-overexpressing strain. The addition of different metal chlorides to S. lomondensis S015 N1 cultivations showed that CaCl2, FeCl2, and MnCl2 led to an increase in lomofungin biosynthesis. The optimum concentrations of these metal chlorides were obtained using response surface methodology. CaCl2 (0.04 mM), FeCl2 (0.33 mM), and MnCl2 (0.38 mM) gave a maximum lomofungin production titer of 318.0 ± 10.7 mg/l, which was a 4.1-fold increase compared with that of S. lomondensis S015 N1 without the addition of a metal chloride. This work demonstrates that the biosynthesis of phenazine metabolites can be induced by afsR. The results also indicate that metal chlorides addition might be a simple and useful strategy for improving the production of other phenazine metabolites in Streptomyces.

혐기성 수소생산 시 운전 pH 변화에 따른 미생물의 군집 변화 (Change of Microbial Communities in Fermentative Hydrogen Production at Difference Cultivation pHs)

  • 전윤선;이관용;조윤아;이태진
    • 대한환경공학회지
    • /
    • 제30권12호
    • /
    • pp.1239-1244
    • /
    • 2008
  • 본 연구는 혐기성 발효에 의한 수소 생산 시 pH가 3에서 10까지 단계적으로 변화되는 조건에서 미생물의 군집 변화를 살펴보기 위해 PCR-DGGE를 실시하였다. 최대 수소생산 수율은 pH 5에서 1.8 mol $H_2$/mol substrate로 측정 되었으며, 각 pH에서 미생물의 성장량과 수소생산효율의 비례적 상관관계가 나타나지 않았다. 각 pH에서 채취된 미생물의 16S rDNA을 target으로 한 PCRDGGE를 수행한 결과, pH 조건에 따라 미생물의 군집 조성에 변화가 있음을 확인할 수 있었다. 미생물 종의 대부분은 Klebsiella 속으로 규명되었으며 Streptococcus 속과 Clostridium 속 미생물이 수소생산 효율에 많은 영향을 미치는 것으로 판단되었다.

Use of Nitrate-nitrogen as a Sole Dietary Nitrogen Source to Inhibit Ruminal Methanogenesis and to Improve Microbial Nitrogen Synthesis In vitro

  • Guo, W.S.;Schaefer, D.M.;Guo, X.X.;Ren, L.P.;Meng, Qingxiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권4호
    • /
    • pp.542-549
    • /
    • 2009
  • An in vitro study was conducted to determine the effect of nitrate-nitrogen used as a sole dietary nitrogen source on ruminal fermentation characteristics and microbial nitrogen (MN) synthesis. Three treatment diets were formulated with different nitrogen sources to contain 13% CP and termed i) nitrate-N diet (NND), ii) urea-N diet (UND), used as negative control, and iii) tryptone-N diet (TND), used as positive control. The results of 24-h incubations showed that nitrate-N disappeared to background concentrations and was not detectable in microbial cells. The NND treatment decreased net $CH_4$ production, but also decreased net $CO_2$ production and increased net $H_2$ production. Total VFA concentration was lower (p<0.05) for NND than TND. Suppression of $CO_2$ production and total VFA concentration may be linked to increased concentration of $H_2$. The MN synthesis was greater (p<0.001) for NND than UND or TND (5.74 vs. 3.31 or 3.34 mg/40 ml, respectively). Nitrate addition diminished methane production as expected, but also increased MN synthesis.

Effect of Protein Sources on Rumen Microbial Protein Synthesis Using Rumen Simulated Continuous Culture System

  • Joo, J.W.;Bae, G.S.;Min, W.K.;Choi, H.S.;Maeng, W.J.;Chung, Y.H.;Chang, M.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권3호
    • /
    • pp.326-331
    • /
    • 2005
  • A rumen simulated continuous culture (RSCC) system was used to study the influence of supplementation of the three different types of protein sources such as urea, casein and soy protein on rumen microbial synthesis in terms of rumen microbial synchronization. The urea treatment showed the highest pH value. Ammonia nitrogen concentration was rapidly increased after feeding and not significantly different in the urea treatment (13.53 mg/100 ml). Protozoa numbers were not significantly different for soy protein and casein treatment compared to urea treatments during incubation. The average concentration of total VFA (mMol) was not detected with significant difference among treatments, but iso-butyrate production showed the highest for soy protein treatment among treatments (p<0.001). The lowest concentration in total iso-acids (iso-butyrate and iso-valerate) production was observed in urea treatment. The soy protein treatment showed no significantly change in acetate/propionate. The amounts of dry matter (DM) out flow showed no significant difference among treatments. Organic matter (OM) flow was the highest for urea treatments and the lowest for casein treatment (p<0.03). The nitrogen flow for casein treatment was not significantly different from other treatments. The efficiency of microbial protein synthesis in terms of microbial nitrogen (MN) synthesis (g MN/kg ADOM) digested in the rumen was highest for casein treatment (58.53 g MN/kg ADOM) compared to soy protein and urea (p<0.05). This result suggests that rumen ammonia releasing rate may influence on microbial protein synthesis in the rumen.

Effect of Intraruminal Sucrose Infusion on Volatile Fatty Acid Production and Microbial Protein Synthesis in Sheep

  • Kim, K.H.;Lee, S.S.;Kim, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권3호
    • /
    • pp.350-353
    • /
    • 2005
  • Effects of sucrose supplement on the pattern of VFA production and microbial protein synthesis in the rumen were examined in sheep consuming basal diet of grass silage (2.5 kg fresh wt/d) that was provided in 24 equal meals each day by an automatic feeder. Four mature wethers were allocated to four experimental treatments in a 4${\times}$4 Latin square design with periods lasting 14 days. The treatments were (1) the basal diet, (2) supplemented with 150 g sucrose and 7.0 g urea, (3) 300 g sucrose and 13 g urea, and (4) 450 g sucrose and 20 g urea given as a continuous intraruminal infusion for 24 h. All infusions were given in 2 litres of aqueous solution per day using a peristaltic pump. The effect of sucrose level on rumen mean pH was significantly linear (p<0.01). There were not significant differences in the concentration of ammonia-N, total VFA and the molar proportions of acetate, propionate and butyrate with the level of sucrose infusion. The molar proportions of isobutyric acid (p<0.05) and isovaleric acid (p<0.001) were significantly reduced when the infused amount of sucrose was increased. The flow of microbial N was linearly (p<0.001) increased with sucrose and urea level. High levels of readily fermentable carbohydrate in a ration reduced the efficiency of microbial protein synthesis in the rumen. It was demonstrated that of the individual fatty acids, only the molar proportion of isovalerate showed a significant negative correlation (R2=$0.3501^{**}$) with the amount of microbial N produced and a significant positive correlation (R2=$0.2735^{**}$) with the efficiency of microbial growth.

High ${\beta}$-Glucosidase Secretion in Saccharomyces cerevisiae Improves the Efficiency of Cellulase Hydrolysis and Ethanol Production in Simultaneous Saccharification and Fermentation

  • Tang, Hongting;Hou, Jin;Shen, Yu;Xu, Lili;Yang, Hui;Fang, Xu;Bao, Xiaoming
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권11호
    • /
    • pp.1577-1585
    • /
    • 2013
  • Bioethanol production from lignocellulose is considered as a sustainable biofuel supply. However, the low cellulose hydrolysis efficiency limits the cellulosic ethanol production. The cellulase is strongly inhibited by the major end product cellobiose, which can be relieved by the addition of ${\beta}$-glucosidase. In this study, three ${\beta}$-glucosidases from different organisms were respectively expressed in Saccharomyces cerevisiae and the ${\beta}$-glucosidase from Saccharomycopsis fibuligera showed the best activity (5.2 U/ml). The recombinant strain with S. fibuligera ${\beta}$-glucosidase could metabolize cellobiose with a specific growth rate similar to the control strain in glucose. This recombinant strain showed higher hydrolysis efficiency in the cellulose simultaneous saccharification and fermentation, when using the Trichoderma reesei cellulase, which is short of the ${\beta}$-glucosidase activity. The final ethanol concentration was 110% (using Avicel) and 89% (using acid-pretreated corncob) higher than the control strain. These results demonstrated the effect of ${\beta}$-glucosidase secretion in the recombinant S. cerevisiae for enhancing cellulosic ethanol conversion.

The Pragmatic Introduction and Expression of Microbial Transgenes in Plants

  • Ali, Sajid;Park, Soon-Ki;Kim, Won-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.1955-1970
    • /
    • 2018
  • Several genetic strategies have been proposed for the successful transformation and expression of microbial transgenes in model and crop plants. Here, we bring into focus the prominent applications of microbial transgenes in plants for the development of disease resistance; mitigation of stress conditions; augmentation of food quality; and use of plants as "bioreactors" for the production of recombinant proteins, industrially important enzymes, vaccines, antimicrobial compounds, and other valuable secondary metabolites. We discuss the applicable and cost-effective approaches of transgenesis in different plants, as well as the limitations thereof. We subsequently present the contemporary developments in targeted genome editing systems that have facilitated the process of genetic modification and manifested stable and consumer-friendly, genetically modified plants and their products. Finally, this article presents the different approaches and demonstrates the introduction and expression of microbial transgenes for the improvement of plant resistance to pathogens and abiotic stress conditions and the production of valuable compounds, together with the promising research progress in targeted genome editing technology. We include a special discussion on the highly efficient CRISPR-Cas system helpful in microbial transgene editing in plants.

사료중 항균제, 생균제 또는 유카 추출물이 닭의 장내 요소 분해효소 활성과 암모니아 생산에 미치는 영향 (Effects of Dietary Antimicrobial Agents, Probiotics or Yucca Extract on Urease Activity and Ammonia Production in the Chicken Intestine)

  • 김규일;여진모
    • 한국가금학회지
    • /
    • 제22권2호
    • /
    • pp.105-115
    • /
    • 1995
  • The balance of microbial populations in the gastrointestinal (GI) tract of all warm-blooded animals is critical to the maintenance of health and resistance to disease. The composition of the populations can be altered by diet and environment, making the host animal susceptible to disease, and reducing growth rate and feed efficiency. Some feed additives including antimicrobial agents, prohiotics or yucca extract have been used to promote growth and feed utilization. There is evidence that part of growth-promoting effect of those feed additives results from the suppression of microbial urease activity or ammonia production in the GI contents of animals. Over 200 microbial species have been known to produce urease and the product of urea hydrolysis, ammonia, is toxic to animals. Carefully tested probiotics or other urease-suppressing agents can be a possible alternative to antimicrobial agents including antibiotics as growth promotants used for animals feeds.

  • PDF

Application of Phytase, Microbial or Plant Origin, to Reduce Phosphorus Excretion in Poultry Production

  • Paik, InKee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권1호
    • /
    • pp.124-135
    • /
    • 2003
  • In order to prevent pollution from animal waste, the excretion of nutrients should be reduced through proper nutritional management. Among the many nutrients of concern, such as N, P, Cu, Zn and K, P is one of the most concerned nutrients to be managed. Seven feeding trials, three with layers and four with broilers, were conducted to determine if microbial phytase supplementation can reduce non-phytate phosphorus (NPP) level in diets and results in concomitant reductions of P excretion. The results showed that microbial phytase can be successfully used to achieve these purposes. Activity of natural phytase in certain plant feedstuffs is high enough to be considered in feed formulation. Three experiments have been conducted to study the characteristics of plant phytase and its application to feeding of broilers. Selected brands of wheat bran could be successfully used as a source of phytase in broiler feeding.

Microbial Phytase와 무기태 인 수준별 급여가 산란 생산성, 소화율 및 계란 품질에 미치는 영향 (Effect of Supplemental Microbial Phytase and Nonphytate Phosphorus Levels on Performance, Digestibility and Egg Quaility in Layer)

  • 김상호;유동조;박수영;이상진;박용윤;이원준
    • 한국가금학회지
    • /
    • 제27권3호
    • /
    • pp.243-254
    • /
    • 2000
  • The effect of supplemental microbial phytase and non - phytate phosphorus(NPP) levels on layer productivity and nutrient digestibility were conducted in 640 21 weeks - old HyLine brown layer for 12 weeks. Supplemented phytase levels were 0, 300, 500 and 1,000 DPU/kg diet. NPP levels were adjusted with tricalcium phosphate(TCP), which were 0(0.11% NPP), 0.5(0.20), 1.0(0.29) and 1.5%(0.38). ME, CP and Ca levels were maintained at 2,800㎉/kg diet, 16% and 3.5%, respectively. Egg production was increased with phytase compared to without phytase(P〈0.05). Increasement of egg production was higher latter of experimental period. Egg production was not different to phytase levels. Egg production in TCP levels were increased in above 0.5% compared to 0% TCP. Difference of egg production by TCP was higher after 6 week. Especially, egg production to supplemental phytase was higher in 0% TCP. Egg weight was not different to phytase and TCP levels. Egg mass was increased with phytase compared to without phytase, but not difference significantly. There was similar to phytase levels. Egg mass in TCP group was increased in TCP supplementation(P〈0.05). Feed intake was not different in phytase levels, and greater with increasing TCP levels(P〈0.05). Feed conversion was improved with phytase(P〈0.05), and not difference in TCP levels. All of nutrients digestibility tended to improve with phytase, P(P〈0.05), especially. There were not different among phytase levels. The effect of adding phytase was higher in low phosphorus diets compared normal levels. Eggshell breaking strength and eggshell thickness also improved in added phytase(P〈0.05). Tibial ash and P content were slightly increased with phytase, and Ca content also was higher(P〈0.05) compared without phytase. We concluded that supplemental phytase in low phosphorus diet was showed to increase laying performance, feed efficiency, nutrients digestibility, egg quality, and bone development. Phytase supplementation was able to compensate for low NPP diet. We also thought optimum phytase level is 300 DPU, and can decrease NPP supplementation adding phytase in later diet.

  • PDF