Browse > Article
http://dx.doi.org/10.5713/ajas.2009.80361

Use of Nitrate-nitrogen as a Sole Dietary Nitrogen Source to Inhibit Ruminal Methanogenesis and to Improve Microbial Nitrogen Synthesis In vitro  

Guo, W.S. (College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, China Agricultural University)
Schaefer, D.M. (Department of Animal Sciences, University of Wisconsin-Madison)
Guo, X.X. (College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, China Agricultural University)
Ren, L.P. (College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, China Agricultural University)
Meng, Qingxiang (College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, China Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.22, no.4, 2009 , pp. 542-549 More about this Journal
Abstract
An in vitro study was conducted to determine the effect of nitrate-nitrogen used as a sole dietary nitrogen source on ruminal fermentation characteristics and microbial nitrogen (MN) synthesis. Three treatment diets were formulated with different nitrogen sources to contain 13% CP and termed i) nitrate-N diet (NND), ii) urea-N diet (UND), used as negative control, and iii) tryptone-N diet (TND), used as positive control. The results of 24-h incubations showed that nitrate-N disappeared to background concentrations and was not detectable in microbial cells. The NND treatment decreased net $CH_4$ production, but also decreased net $CO_2$ production and increased net $H_2$ production. Total VFA concentration was lower (p<0.05) for NND than TND. Suppression of $CO_2$ production and total VFA concentration may be linked to increased concentration of $H_2$. The MN synthesis was greater (p<0.001) for NND than UND or TND (5.74 vs. 3.31 or 3.34 mg/40 ml, respectively). Nitrate addition diminished methane production as expected, but also increased MN synthesis.
Keywords
Nitrate Nitrogen; Ruminal Methanogenesis; Microbial Nitrogen Synthesis; Gas Production; Rumen Fermentation;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 15
연도 인용수 순위
1 Caver, L. A. and W. H. Pfander. 1974. Some metabolic aspects of urea and/or potassium nitrate utilization by sheep. J. Anim. Sci. 38:410-417   PUBMED
2 Counotte, G. H. M., A. T. van't Klooster and J. van der Kuilen. 1979. An analysis of the buffer system in the rumen of dairy cattle. J. Anim. Sci. 49:1536-1544   DOI   PUBMED   ScienceOn
3 Iwamoto, M., N. Asanuma and T. Hino. 1999. Effects of nitrate combined with funarate on methanogenesis, fermentation, and cellulose digestion by mixed ruminal microbes in vitro. Anim. Sci. J. 70:471-478
4 Iwamoto, M., N. Asanuma and T. Hino. 2001. Effects of pH and electron donors on nitrate and nitrite reduction in ruminal microbiota. Anim. Sci. J. 72:117-125
5 Jones, G. A. 1972. Dissimilatory metabolism of nitrate by the rumen microbiota. Can. J. Microbiol. 18:1783-1789   DOI   PUBMED   ScienceOn
6 Kaspar, H. F. and J. M. Tiedje. 1981. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene. Appl. Environ. Microbiol. 41:705-709   PUBMED
7 Lichtenwalner, R. E., J. P. Fontenot and R. E. Tucker. 1973. Effect of source of supplemental nitrogen and level of nitrate on feedlot performance and vitamin A metabolism of fattening beef calves. J. Anim. Sci. 37:837-847   PUBMED
8 Takahashi, J. and B. A. Young. 1991. Prophylactic effect of Lcysteine on nitrate-induced alteration in respiratory exchange and metabolic rate in sheep. Anim. Feed Sci. Technol. 35:105-113   DOI   ScienceOn
9 Richardson, D. J. and N. J. Watmough. 1999. Inorganic nitrogen metabolism in bacteria. Curr. Opin. Chem. Biol. 3:207-219   DOI   ScienceOn
10 Russell, J. B. and J. L. Jeraci. 1984. Effect of carbon monoxide on fermentation of fiber, starch, and amino acids by mixed rumen microorganisms in vitro. Appl. Environ. Microbiol. 48:211-217   PUBMED
11 Schofield, P. 2000. Gas production (Chapter 10). In: Farm animal metabolism and nutrition (Ed. J. P. F. D'Mello). CABI Publishing, UK. pp. 450
12 Farra, P. A. and L. D. Satter. 1971. Manipulation of the ruminal fermentation. III. Effect of nitrate on ruminal volatile fatty acid production and milk composition. J. Dairy Sci. 54:1018-1024   DOI
13 Hasan, S. M. and J. B. Hall. 1975. The physiological function of nitrate reduction in Clostridium perfringens. J. Gen. Microbiol. 87:120-128   DOI   PUBMED   ScienceOn
14 Wohlt, J. E., J. H. Clark and F. S. Blaisdell. 1976. Effect of sampling location, time, and method of concentration of ammonia nitrogen in rumen fluid. J. Dairy Sci. 59:459-464   DOI   ScienceOn
15 Tugtas, A. E. and S. G. Pavlostathis. 2007. Inhibitory effects of nitrogen oxides on a mixed methanogenic culture. Biotechnol. Bioeng. 96:444-455   DOI   ScienceOn
16 Allison, M. J. and C. A. Reddy. 1984. Adaptations of gastrointestinal bacteria in response to changes in dietary oxalate and nitrate. In: Proceedings of the Third International Symposium on Microbial Ecology (Ed. M. J. Klug and C. A. Reddy). American Society for Microbiology. Washington, DC. pp. 248-256
17 Smolenski, W. J. and J. A. Robinson. 1988. In situ rumen hydrogen concentrations in steers fed eight times daily, measured using a mercury reduction detector. FEMS. Microbiol. Ecol. 53:95-100   DOI   ScienceOn
18 Thauer, R. K., K. Jungermann and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100-180   PUBMED
19 Russell, J. B. and R. J. Wallace. 1997. Energy-yielding and energy-consuming reactions. In: The rumen microbial ecosystem, 2nd Ed. Blackie Academic and Professional, New York, NY, USA. pp. 246-282
20 Hungate, R. E. 1967. Hydrogen as an intermediate in the rumen fermentation. Arch. Microbiol. 59:158-164
21 Clarens, M., N. Bernet, J. Delgen$\acute{e}$s and R. Moletta. 1998. Effects of N-oxides and denitrification by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei. FEMS. Microbiol. Ecol. 25:271-276   DOI   ScienceOn
22 Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz and W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agri. Sci. (Camb.) 93:217-222   DOI
23 Snedecor, G. W. and W. G. Cochran. 1980. In: Statistical Methods, 7th Ed. The Iowa State University Press, Ames, IA, USA. pp. 507
24 Czerkawski, J. W. and G. Breckenridge. 1971. Determination of concentration of hydrogen and some other gasses dissolved in biological fluids. Lab. Pract. 20:403-413   PUBMED
25 Iwamoto, M., N. Asanuma and T. Hino. 2002. Ability of Selenomonas ruminantium, Viellonella parvula, and Wolinella succinogenes to reduce nitrate and nitrite with special reference to the suppression of ruminal methanogenesis. Anaerobe 8:209-215   DOI   ScienceOn
26 Broderick, G. A. and J. H. Kang. 1980. Automated simultaneous determination of ammonia and amino acids in ruminal fluids and in vitro media. J. Dairy Sci. 63:64-75   DOI   ScienceOn
27 Emerick, R. J. 1988. Nitrate toxicity. In: The ruminant animal digestive physiology and nutrition (Ed. D. C. Church). Waveland Press, Prospect Heights, IL. pp. 480-483
28 Marais, J. P., J. J. Therion, R. I. Mackie, A. Kistner and C. Dennison. 1988. Effect of nitrate and its reduction products on the growth and activity of the rumen microbial population. Br. J. Nutr. 59:301-313   DOI   ScienceOn
29 Kluber, H. D. and R. Conrad. 1998. Effects of nitrate, nitrite, NO, and $N_{2}O$ on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiol. Ecol. 25:301-318
30 Madigan, M. T., J. M. Martinko and J. Parker. 1997. Energy calculations in microbial bioenergetics. In: Brock biology of microorganisms, 8th Ed. Prentice Hall, Upper Saddle River, NJ, USA. pp. A1-A4
31 Turner, A. W. and V. E. Hodgetts. 1955. Buffer systems in the rumen of sheep. Aust. J. Agric. Res. 6:115-144   DOI
32 Merry, R. J. and A. B. McAllan. 1983. A comparison of the chemical composition of mixed bacteria harvested from the liquid and solid fractions of rumen digesta. Br. J. Nutr. 50:701-709   DOI   ScienceOn
33 AOAC. 1990. Official methods of analysis. 15th edn. Association of Official Analytical Chemists, Arlington, Virginia
34 Cord-Ruwisch, R., H. J. Seitz and R. Conrad. 1988. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149:350-357   DOI
35 Isaacson, H. R., F. C. Hinds, M. P. Bryant and F. N. Owens. 1975. Efficiency of energy utilization by mixed rumen bacteria in continuous culture. J. Dairy Sci. 58:1645-1659   DOI   ScienceOn
36 Conrad, R. and B. Wetter. 1990. Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. Arch. Microbiol. 155:94-98   DOI