Browse > Article
http://dx.doi.org/10.4014/jmb.1305.05011

High ${\beta}$-Glucosidase Secretion in Saccharomyces cerevisiae Improves the Efficiency of Cellulase Hydrolysis and Ethanol Production in Simultaneous Saccharification and Fermentation  

Tang, Hongting (State Key Laboratory of Microbial Technology, Shandong University)
Hou, Jin (State Key Laboratory of Microbial Technology, Shandong University)
Shen, Yu (State Key Laboratory of Microbial Technology, Shandong University)
Xu, Lili (State Key Laboratory of Microbial Technology, Shandong University)
Yang, Hui (State Key Laboratory of Microbial Technology, Shandong University)
Fang, Xu (State Key Laboratory of Microbial Technology, Shandong University)
Bao, Xiaoming (State Key Laboratory of Microbial Technology, Shandong University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.11, 2013 , pp. 1577-1585 More about this Journal
Abstract
Bioethanol production from lignocellulose is considered as a sustainable biofuel supply. However, the low cellulose hydrolysis efficiency limits the cellulosic ethanol production. The cellulase is strongly inhibited by the major end product cellobiose, which can be relieved by the addition of ${\beta}$-glucosidase. In this study, three ${\beta}$-glucosidases from different organisms were respectively expressed in Saccharomyces cerevisiae and the ${\beta}$-glucosidase from Saccharomycopsis fibuligera showed the best activity (5.2 U/ml). The recombinant strain with S. fibuligera ${\beta}$-glucosidase could metabolize cellobiose with a specific growth rate similar to the control strain in glucose. This recombinant strain showed higher hydrolysis efficiency in the cellulose simultaneous saccharification and fermentation, when using the Trichoderma reesei cellulase, which is short of the ${\beta}$-glucosidase activity. The final ethanol concentration was 110% (using Avicel) and 89% (using acid-pretreated corncob) higher than the control strain. These results demonstrated the effect of ${\beta}$-glucosidase secretion in the recombinant S. cerevisiae for enhancing cellulosic ethanol conversion.
Keywords
${\beta}$-Glucosidase; Saccharomyces cerevisiae; cellulase; simultaneous saccharification; fermentation; ethanol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Stenberg K, Bollok M, Reczey K, Galbe M, Zacchi G. 2000. Effect of substrate and cellulase concentration on simultaneous saccharification and fermentation of steam-pretreated softwood for ethanol production. Biotechnol. Bioeng. 68: 204-210.   DOI   ScienceOn
2 Sun Y, Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11.   DOI   ScienceOn
3 van Rooyen R, Hahn-Hagerdal B, La Grange DC, van Zyl WH. 2005. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J. Biotechnol. 120: 284-295.   DOI   ScienceOn
4 Wilde C, Gold N, Bawa N, Tambor J, Mougharbel L, Storms R, Martin VJ. 2012. Express of a library of fungal $\beta$-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain. Appl. Microbiol. Biotechnol. 95: 647-659.   DOI   ScienceOn
5 Yazdi MT, Woodward JR, Radford A. 1990. The cellulase complex of Neurospora crassa: activity, stability and release. J. Gen. Microbiol. 136: 1313-1319.   DOI   ScienceOn
6 Zhang L, Guo Z, Hong J, Ding Z, Gao Z, He Z, et al. 2012. Expressing $\beta$-glucosidase from Saccharomycopsis fibuligera in industrial ethanol producing yeast and evaluation of the expressing sufficiency. Ann. Microbiol. 62: 539-544.   DOI
7 Den Haan R, Rose SH, Lynd LR, van Zyl WH. 2007. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab. Eng. 9: 87-94.   DOI   ScienceOn
8 Andric P, Meyer A, Jensen P, Dam-Johansen K. 2010. Effect and modeling of glucose inhibition and in situ g luc ose removal during enzymatic hydrolysis of pretreated wheat straw. Appl. Biochem. Biotechnol. 160: 280-297.   DOI   ScienceOn
9 Berghem LE, Pettersson LG. 1974. The mechanism of enzymatic cellulose degradation. Isolation and some properties of a beta-glucosidase from Trichoderma viride. Eur. J. Biochem. 46: 295-305.   DOI   ScienceOn
10 Bezerra RM, Dias AA. 2005. Enzymatic kinetic of cellulose hydrolysis: inhibition by ethanol and cellobiose. Appl. Biochem. Biotechnol. 126: 49-59.   DOI   ScienceOn
11 Drissen RET, Maas RHW, Tramper J, Beeftink HH. 2009. Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation. Biocatal. Biotransform. 27: 27-35.   DOI   ScienceOn
12 Du F, Wolger E, Wallace L, Liu A, Kaper T, Kelemen B. 2010. Determination of product inhibition of CBH1, CBH2, and EG1 using a novel cellulase activity assay. Appl. Biochem. Biotechnol. 161: 313-317.   DOI   ScienceOn
13 Entian K-D, Kötter P. 1998. 23 Yeast mutant and plasmid collections, p. 431-449. In Alistair JPB, Mick T (eds.). Methods in Microbiology, Academic Press.
14 Fan Z, McBride JE, van Zyl WH, Lynd LR. 2005. Theoretical analysis of selection-based strain improvement for microorganisms with growth dependent upon extracytoplasmic enzymes. Biotechnol. Bioeng. 92: 35-44.   DOI   ScienceOn
15 Gibson DG. 2011. Enzymatic assembly of overlapping DNA fragments. Meth. Enzymol. 498: 349-361.   DOI
16 Ha S-J, Galazka JM, Kim SR, Choi J-H, Yang X, Seo J-H, et al. 2011. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. USA 108: 504-509.   DOI   ScienceOn
17 Hahn-Hagerdal B, Wahlbom CF, Gardonyi M, Zyl W, Otero RC, Jonsson L. 2001. Metabolic engineering of Saccharomyces cerevisiae for Xylose Utilization, p. 53-84. In Nielsen J, Eggeling L, Dynesen J, Gardonyi M, Gill RT, Graaf AA, et al. (eds.). Metabolic Engineering, Springer Berlin Heidelberg.
18 Gietz RD, Schiestl RH, Willems AR, Woods RA. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11: 355-360.   DOI   ScienceOn
19 Gurgu L, Lafraya A, Polaina J, Marin-Navarro J. 2011. Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the beta-glucosidase gene (BGL1) from Saccharomycopsis fibuligera. Bioresour. Technol. 102: 5229-5236.   DOI   ScienceOn
20 Gusakov AV, Sinitsyn AP, Manenkova JA, Protas OV. 1992. Enzymatic saccharification of industrial and agricultural lignocellulosic wastes. Appl. Biochem. Biotechnol. 34-35: 625-637.   DOI
21 Hari Krishna S, Chowdary GV. 2000. Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass. J. Agric. Food Chem. 48: 1971-1976.   DOI   ScienceOn
22 Hou J, Tyo K, Liu Z, Petranovic D, Nielsen J. 2012. Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae. Metab. Eng. 14: 120-127.   DOI   ScienceOn
23 Ilmen M, den Haan R, Brevnova E, McBride J, Wiswall E, Froehlich A, et al. 2011. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol. Biofuels. 4: 30.   DOI   ScienceOn
24 Nagar S, Gupta VK, Kumar D, Kumar L, Kuhad RC. 2010. Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J. Ind. Microbiol. Biotechnol. 37: 71-83.   DOI   ScienceOn
25 Liu Z, Tyo KE, Martinez JL, Petranovic D, Nielsen J. 2012. Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol. Bioeng. 109: 1259-1268.   DOI   ScienceOn
26 Lynd LR, van Zyl WH, McBride JE, Laser M. 2005. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16: 577-583.   DOI   ScienceOn
27 Philippidis G, Spindler D, Wyman C. 1992. Mathematical modeling of cellulose conversion to ethanol by the simultaneous saccharification and fermentation process. Appl. Biochem. Biotechnol. 34-35: 543-556.   DOI
28 Merino S, Cherry J. 2007. Progress and challenges in enzyme development for biomass utilization, pp. 95-120. In Olsson L (ed.). Biofuels. Vol. 108. Springer Berlin-Heidelberg.
29 Nieves RA, Ehrman CI, Adney WS, Elander RT, Himmel ME. 1997. Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J. Microbiol. Biotechnol. 14: 301-304.   DOI
30 Peng B, Shen Y, Li X, Chen X, Hou J, Bao X. 2012. Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab. Eng. 14: 9-18.   DOI   ScienceOn
31 Philippidis GP, Smith TK, Wyman CE. 1993. Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol. Bioeng. 41: 846-853.   DOI   ScienceOn
32 Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, et al. 2006. The path forward for biofuels and biomaterials. Science 311: 484-489.   DOI   ScienceOn
33 Spindler D, Wyman C, Grohmann K, Mohagheghi A. 1989. Simultaneous saccharification and fermentation of pretreated wheat straw to ethanol with selected yeast strains and β- glucosidase supplementation. Appl. Biochem. Biotechnol. 20-21: 529-540.   DOI
34 Sadie C, Rose S, Haan R, Zyl W. 2011. Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 90: 1373-1380.   DOI   ScienceOn
35 Shen Y, Zhang Y, Ma T, Bao X, Du F, Zhuang G, et al. 2008. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing beta-glucosidase. Bioresour. Technol. 99: 5099-5103.   DOI   ScienceOn
36 Shi SL, FW He. 2008. Analysis and Measurement of Pulp and Paper (in Chinese). Chinese Light Industry Press, Beijing.