• 제목/요약/키워드: microbial physiology

검색결과 115건 처리시간 0.019초

계절에 따른 일반 농가와 복지 농가 육계의 맹장 내 미생물 균총에 미치는 영향 (Effects of Season Differences on the Cecal Microbiome of Broiler at Conventional Farms and Welfare System Farms)

  • 김준식;박설화;김민지;심성훈;강환구;정진영
    • 한국가금학회지
    • /
    • 제51권2호
    • /
    • pp.73-82
    • /
    • 2024
  • 육계의 장내 미생물 균총은 전반적인 건강을 유지하고 사육 생산성에 영향을 미치는 중요한 요소이다. 하지만 한국의 여름철 고온 환경과 밀집 사육 시스템은 육계에게 스트레스를 유발하여 장내 미생물 균총의 불균형을 유발할 수 있다. 이러한 배경으로 본 연구는 한국의 복지형 농가와 일반 농가에서 봄과 여름철 육계의 장내 미생물 균총을 비교분석하기 위해 수행되었다. 19일령 육계 총 31수를 공시하였으며, 봄철 일반농가(n = 8); 여름철 일반농가(n = 8); 봄철 복지농가(n = 7); 여름철 복지농가(n = 8)에 각각 할당되었다. 계절 간 일반 농가와 복지 농가 육계의 맹장내 미생물 조성 차이를 분석하기 위해 Beta diversity 분석을 수행하였으며, 일반 농가와 복지 농가 모두 맹장내 미생물 구성이 뚜렷한 차이를 보였다. 일반 농가에서 맹장내 미생물 균총 분포를 문 수준에서 분석한 결과, Bacteroidetes의 비율은 봄철이 여름철과 비교해 높은 풍부도를 보였다. 속 수준에서 분석한 결과, 봄철 육계는 Bacteroides와 Alistipes의 비율이 여름철과 비교해 높은 풍부도를 보였다. 복지 농가에서 맹장내 미생물 균총 분포를 문 수준에서 분석한 결과, 봄철과 여름철 모두에서 Firmicutes와 Bacteroidota가 우점하였다. 하지만, LEfSe 분석 결과, 미생물 균총 구성의 차이는 일반 농가와 비교해 상대적으로 적었다. 결론적으로 우리의 결과는 고온 스트레스가 육계의 맹장내 미생물 균총에 악영향을 줄 수 있지만, 주거 환경의 개선이 고온 스트레스의 영향을 완화시켜줄 수 있음을 시사한다.

Effects of dietary cation and anion difference on eating, ruminal function and plasma leptin in goats under tropical condition

  • Nguyen, Thiet;Chanpongsang, Somchai;Chaiyabutr, Narongsak;Thammacharoen, Sumpun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권6호
    • /
    • pp.941-948
    • /
    • 2020
  • Objective: This study was carried out to determine the effects of elevated dietary cation and anion difference (DCAD) on dry matter intake (DMI) and ruminal fermentation pattern in lactating dairy goats under tropical conditions. Methods: Ten dairy goats were divided into two groups of five animals each. The groups received diets at different DCAD levels, either a control diet (22.81 mEq/100 g dry matter [DM], DCAD-23) or a DCAD-39 diet (39.08 mEq/100 g DM, DCAD-39). After parturition, DMI and water intake were recorded daily. Ruminal fluid and urine were collected, and nutrient digestibility measurements were carried out at 8th weeks postpartum (PP-8). Blood samples were collected at PP-4 and PP-8 to measure plasma leptin. Results: Dry matter intake/body weight (DMI/BW) at PP-8 of the animals fed the DCAD-39 diet was significantly higher than those fed with DCAD-23 diet (p<0.05). Animals fed with DCAD-39 consumed more water than those fed DCAD-23 over 24 h, particularly at night (p<0.05). Ruminal pH, acetate concentration, and urinary allantoin excretion increased with the DCAD-39 diet, whereas ruminal butyrate concentration was lower with the DCAD-39 diet. On the other hand, other ruminal parameters, such as total volatile fatty acid concentration, propionate molar proportion and acetate/propionate average ratio, were not affected by increased DCAD supplementation. Apparent digestibility was improved by increased DCAD supplementation. Plasma leptin concentration was higher with DCAD supplementation. Conclusion: When feeding goats with DCAD-39 under tropical conditions, an increase in DMI was associated with improved apparent digestibility of nutrients, ruminal fermentation and microbial protein synthesis. An increase in plasma leptin concentration could not explain the effect of high DCAD on DMI.

Evaluation of in vitro ruminal fermentation of ensiled fruit byproducts and their potential for feed use

  • Mousa, Shimaa A;Malik, Pradeep K.;Kolte, Atul P.;Bhatta, Raghavendra;Kasuga, Shigemitsu;Uyeno, Yutaka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권1호
    • /
    • pp.103-109
    • /
    • 2019
  • Objective: Ensiling of tannin-rich fruit byproducts (FB) involves quantitative and qualitative changes in the tannins, which would consequently change the rumen fermentation characteristics. This study aimed to evaluate whether ensiled FBs are effective in mitigating methane emission from ruminants by conducting in vitro assessments. Methods: Fruit byproducts (grape pomace, wild grape pomace, and persimmon skin) were collected and subjected to four-week ensiling by Lactobacillus buchneri inoculant. A defined feed component with or without FB samples (both fresh and ensiled material) were subjected to in vitro anaerobic culturing using rumen fluid sampled from beef cattle, and the fermentation parameters and microbial populations were monitored. Results: Reduced methane production and a proportional change in total volatile fatty acids (especially enhanced propionate proportion) was noted in bottles containing the FBs compared with that in the control (without FB). In addition, we found lower gene copy number of archaeal 16S rRNA and considerably higher levels of one of the major fibrolytic bacteria (Fibrobacter succinogenes) in the bottles containing FBs than in the control, particularly, when it was included in a forage-based feed. However, in the following cultivation experiment, we observed that FBs failed to exhibit a significant difference in methane production with or without polyethylene glycol, implying that tannins in the FBs may not be responsible for the mitigation of methane generation. Conclusion: The results of the in vitro cultivation experiments indicated that not only the composition but also ensiling of FBs affected rumen fermentation patterns and the degree of methane generation. This is primarily because of the compositional changes in the fibrous fraction during ensiling as well as the presence of readily fermented substrates, whereas tannins in these FBs seemed to have little effect on the ruminal fermentation kinetics.

한국 토양 환경유래의 N-acyl amino acid synthase 유전자에 의한 대장균 내 항생제 N-lauroyl tyrosine 생산 (Isolation of N-Iauroyl Tyrosine Antibiotic in E. coli Carrying N-acyl Amino Acid Synthase Gene from Environmental DNA in Korean Soils)

  • 여윤수;임융호;김정봉;양정모;이창묵;김수진;박민선;구본성;윤상홍
    • Applied Biological Chemistry
    • /
    • 제50권4호
    • /
    • pp.262-267
    • /
    • 2007
  • 토양에는 생존하지만 현 기술로는 배양이 불가능한 미생물로부터 천연 항생제를 탐색하기 위해 한국 토양 DNA 단편들을 가진 cosmid library을 대장균에서 제작하였고 약6만개의 clone들을 대상으로 항세균 활성을 보여주는 YS92B를 최종 선발하였다. YS92B클론 배양액의 ethyl acetate추출액은 다양한 병원성 세균의 성장을 in vitro에서 강력히 저해하였다(Listeria monocytogenes, Bacillus subtilis, Pseudomonas syringae, Xanthomonas campestris pv. oryzae, Staphylococcus epidemis). 이 항균활성의 주 물질인 YS92B-VII는 ethyl acetate추출, Sephadex LH20 column chromatography와 HPLC(High Performance Liquid Chromatography)에 의해 순차적으로 분리하였으며 이 과정에서 주 활성물질은 각 피크를 항균검정으로 추적하여 최종 정제하였다. 이 물질은 NMR(Nuclear Magnetic Resornance)에 의한 구조 분석 결과에서 탄소 12개의 포화지방산인 lauric acid가 tyrosine에 결합된 N-lauroyl tyrosine임을 최종 확인하였다. 따라서 본 보고는 한국 토양에서 유래한 고유의 N-acyl amino acid synthase(NAS)유전자가 대장균에 발현되어 생산되는 N-acyl amino acid tyrosine의 특성을 밝히는 것이다.

Effects of Synchronization of Carbohydrate and Protein Supply in Total Mixed Ration with Korean Rice Wine Residue on Ruminal Fermentation, Nitrogen Metabolism and Microbial Protein Synthesis in Holstein Steers

  • Piao, Min Yu;Kim, Hyun-J.;Seo, J.K.;Park, T.S.;Yoon, J.S.;Kim, K.H.;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권11호
    • /
    • pp.1568-1574
    • /
    • 2012
  • Three Holstein steers in the growing phase, each with a ruminal cannula, were used to test the hypothesis that the synchronization of the hourly rate of carbohydrate and nitrogen (N) released in the rumen would increase the amount of retained nitrogen for growth and thus improve the efficiency of microbial protein synthesis (EMPS). In Experiment 1, in situ degradability coefficients of carbohydrate and N in feeds including Korean rice wine residue (RWR) were determined. In Experiment 2, three total mixed ration (TMR) diets having different rates of carbohydrate and N release in the rumen were formulated using the in situ degradability of the feeds. All diets were made to contain similar contents of crude protein (CP) and neutral detergent fiber (NDF) but varied in their hourly pattern of nutrient release. The synchrony index of the three TMRs was 0.51 (LS), 0.77 (MS) and 0.95 (HS), respectively. The diets were fed at a restricted level (2% of the animal's body weight) in a $3{\times}3$ Latin-square design. Synchronizing the hourly supply of energy and N in the rumen did not significantly alter the digestibility of dry matter, organic matter, crude protein, NDF or acid detergent fiber (ADF) (p>0.05). The ruminal $NH_3$-N content of the LS group at three hours after feeding was significantly higher (p<0.05) than that of the other groups; however, the mean values of ruminal $NH_3$-N, pH and VFA concentration among the three groups were not significantly different (p>0.05). In addition, the purine derivative (PD) excretion in urine and microbial-N production (MN) among the three groups were not significantly different (p>0.05). In conclusion, synchronizing dietary energy and N supply to the rumen did not have a major effect on nutrient digestion or microbial protein synthesis (MPS) in Holstein steers.

Effects of replacement of para-grass with oil palm compounds on body weight, food intake, nutrient digestibility, rumen functions and blood parameters in goats

  • Buranakarl, C.;Thammacharoen, S.;Semsirmboon, S.;Sutayatram, S.;Chanpongsang, S.;Chaiyabutr, N.;Katoh, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권6호
    • /
    • pp.921-929
    • /
    • 2020
  • Objective: The aim of the present study was to investigate the beneficial effects of dietary supplementation with oil palm frond (leaf) (OPF) with and without oil palm meal (OPM) on nutrient intake and digestibility, ruminal fermentation and growth performance in goats. Methods: Six female crossbred goats were fed for 28 days of 3 diet treatments; 100% para-grass (T1); 50% para-grass + 50% OPF (T2), and 30% para-grass + 50% OPF + 20% OPM (T3). Body weight, rectal temperature, respiratory rate, and urine volume, food intake, dry matter intake and water intake were measured daily. Nutrient digestibility was determined from five consecutive days of last week in each diet. Ruminal fluid, urine and blood were collected at the end for determination of rumen protozoa and volatile fatty acid contents, urinary allantoin excretion, blood cell count and chemistry profiles. Results: Goats fed T2 and T3 showed higher dry matter and nutrients intakes while protein digestibility was suppressed compared with those for T1. Crude fat digestibility declined in T2 but maintained after adding the OPM (T3). High fat intake by giving OPF and OPM corresponded to a higher ruminal acetate/propionate ratio (C2/C3) and serum cholesterol level. An increased urinary allantoin/creatinine ratio was found in T2 and T3 compared with T1, implying an increased number of ruminal microbes. Conclusion: Increased dry matter intake in T2 and T3 suggested that oil palm by-products are partly useful as a replacement for para-grass in goats. Replacement with the by-products increased plasma cholesterol level, which suggested that these products are a useful energy source. Changes in rumen parameters suggested an increased microbial number and activity suitable for acetate production. However, the limited digestibility of protein implies that addition of high protein feeds may be recommended to increase body weight gain of goats.

Degradation of Rice Straw by Rumen Fungi and Cellulolytic Bacteria through Mono-, Co- or Sequential- Cultures

  • Ha, J.K.;Lee, S.S.;Kim, S.W.;Han, In K.;Ushida, K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권6호
    • /
    • pp.797-802
    • /
    • 2001
  • Two strains of rumen fungi (Piromyces rhizinflata B157, Orpinomyces joyonii SG4) and three strains of rumen cellulolytic bacteria (Ruminococcus albus B199, Ruminococcus flavefaciens FD1 and Fibrobacter succinogenes S85) were used as mono-cultures or combinationally arranged as co- and sequential-cultures to assess the relative contributions and interactions between rumen fungi and cellulolytic bacteria on rice straw degradation. The rates of dry matter degradation of co-cultures were similar to those of corresponding bacterial mono-cultures. Compared to corresponding sequential-cultures, the degradation of rice straw was reduced in all co-cultures (P<0.01). Regardless of the microbial species, the cellulolytic bacteria seemed to inhibit the degradation of rice straw by rumen fungi. The high efficiency of fungal cellulolysis seems to affect bacterial degradation rates.

Nanoscopic Morphological Changes in Yeast Cell Surfaces Caused by Oxidative Stress: An Atomic Force Microscopic Study

  • Canetta, Elisabetta;Walker, Graeme M.;Adya, Ashok K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권6호
    • /
    • pp.547-555
    • /
    • 2009
  • Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schizo pombe.

Carnosol induces the osteogenic differentiation of bone marrow-derived mesenchymal stem cells via activating BMP-signaling pathway

  • Abdallah, Basem M.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권3호
    • /
    • pp.197-206
    • /
    • 2021
  • Carnosol is a phenolic diterpene phytochemical found in rosemary and sage with reported anti-microbial, anti-oxidant, anti-inflammatory, and anti-carcinogenic activities. This study aimed to investigate the effect of carnosol on the lineage commitment of mouse bone marrow-derived mesenchymal stem cells (mBMSCs) into osteoblasts and adipocytes. Interestingly, carnosol stimulated the early commitment of mBMSCs into osteoblasts in dose-dependent manner as demonstrated by increased levels of alkaline phosphatase activity and Alizarin red staining for matrix mineralization. On the other hand, carnosol significantly suppressed adipogenesis of mBMSCs and downregulated both early and late markers of adipogenesis. Carnosol showed to induce osteogenesis in a mechanism mediated by activating BMP signaling pathway and subsequently upregulating the expression of BMPs downstream osteogenic target genes. In this context, treatment of mBMSCs with LDN-193189, BMPR1 selective inhibitor showed to abolish the stimulatory effect of carnosol on BMP2-induced osteogenesis. In conclusion, our data identified carnosol as a novel osteoanabolic phytochemical that can promote the differentiation of mBMSCs into osteoblasts versus adipocytes by activating BMP-signaling.

Vitamin A: a key coordinator of host-microbe interactions in the intestine

  • Ye-Ji Bang
    • BMB Reports
    • /
    • 제56권3호
    • /
    • pp.133-139
    • /
    • 2023
  • The human intestine is home to a dense community of microbiota that plays a key role in human health and disease. Nutrients are essential regulators of both host and microbial physiology and function as key coordinators of host-microbe interactions. Therefore, understanding the specific roles and underlying mechanisms of each nutrient in regulating the host-microbe interactions will be essential in developing new strategies for improving human health through microbiota and nutrient intervention. This review will give a basic overview of the role of vitamin A, an essential micronutrient, on human health, and highlight recent findings on the mechanisms by which it regulates the host-microbe interactions.