DOI QR코드

DOI QR Code

Vitamin A: a key coordinator of host-microbe interactions in the intestine

  • Ye-Ji Bang (Department of Biomedical Science, College of Medicine, Seoul National University)
  • Received : 2022.12.27
  • Accepted : 2023.02.06
  • Published : 2023.03.31

Abstract

The human intestine is home to a dense community of microbiota that plays a key role in human health and disease. Nutrients are essential regulators of both host and microbial physiology and function as key coordinators of host-microbe interactions. Therefore, understanding the specific roles and underlying mechanisms of each nutrient in regulating the host-microbe interactions will be essential in developing new strategies for improving human health through microbiota and nutrient intervention. This review will give a basic overview of the role of vitamin A, an essential micronutrient, on human health, and highlight recent findings on the mechanisms by which it regulates the host-microbe interactions.

Keywords

Acknowledgement

This study was supported by Bumsuk Academic Research Fund in 2022.

References

  1. Martinez-Guryn K, Leone V and Chang EB (2019) Regional diversity of the gastrointestinal microbiome. Cell Host Microbe 26, 314-324  https://doi.org/10.1016/j.chom.2019.08.011
  2. Valdes AM, Walter J, Segal E and Spector TD (2018) Role of the gut microbiota in nutrition and health. BMJ 361, 36-44  https://doi.org/10.1136/bmj.k2179
  3. Guinane CM and Cotter PD (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ. Therap Adv Gastroenterol 6, 295-308  https://doi.org/10.1177/1756283X13482996
  4. Hooper LV (2015) Epithelial Cell contributions to intestinal immunity. Adv Immunol 126, 129-172  https://doi.org/10.1016/bs.ai.2014.11.003
  5. Johansson MEV and Hansson GC (2016) Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol 16, 639-649  https://doi.org/10.1038/nri.2016.88
  6. Leon ED and Francino MP (2022) Roles of secretory immunoglobulin A in host-microbiota interactions in the gut ecosystem. Front Microbiol 13, 1922 
  7. Mukherjee S and Hooper LV (2015) Antimicrobial defense of the intestine. Immunity 42, 28-39  https://doi.org/10.1016/j.immuni.2014.12.028
  8. Hooper LV, Littman DR and Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336, 1268-1273  https://doi.org/10.1126/science.1223490
  9. Jensen SK, Paerregaard SI, Brandum EP, Jorgensen AS, Hjorto GM and Jensen BAH (2022) Rewiring host-microbe interactions and barrier function during gastrointestinal inflammation. Gastroenterol Rep 10, 1-15  https://doi.org/10.1093/gastro/goac008
  10. Soderholm AT and Pedicord VA (2019) Intestinal epithelial cells: at the interface of the microbiota and mucosal immunity. Immunology 158, 267-280  https://doi.org/10.1111/imm.13117
  11. Ma N, Guo P, Zhang J et al (2018) Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Front Immunol 9, 5 
  12. Redfern CPF (2020) Vitamin A and its natural derivatives. Methods Enzymol 637, 1-25  https://doi.org/10.1016/bs.mie.2020.02.002
  13. Britton G (2009) Vitamin A and vitamin A deficiency; in carotenoids. Britton G, Pfander H, Liaaen-Jensen S (eds.), 173-190, Birkhauser Basel, Switzerland 
  14. Clagett-Dame M and Knutson D (2011) Vitamin A in reproduction and development. Nutrients 3, 385-428  https://doi.org/10.3390/nu3040385
  15. Sommer A (1997) Vitamin A deficiency, child health, and survival. Nutrition 13, 484-485  https://doi.org/10.1016/S0899-9007(97)00013-0
  16. Imdad A, Mayo-Wilson E, Herzer K and Bhutta ZA (2017) Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst Rev 3, CD008524 
  17. Quick TC and Ong DE (1990) Vitamin A metabolism in the human intestinal Caco-2 cell line. Biochemistry 29, 11116-11123  https://doi.org/10.1021/bi00502a015
  18. Reboul E (2013) Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins. Nutrients 5, 3563-3581  https://doi.org/10.3390/nu5093563
  19. Nayak N, Harrison EH and Hussain MM (2001) Retinyl ester secretion by intestinal cells: a specific and regulated process dependent on assembly and secretion of chylomicrons. J Lipid Res 42, 272-280  https://doi.org/10.1016/S0022-2275(20)31689-8
  20. Blomhoff R, Green MH, Berg T and Norum KR (1990) Transport and storage of vitamin A. Science 250, 399-404  https://doi.org/10.1126/science.2218545
  21. Cooper AD (1997) Hepatic uptake of chylomicron remnants. J Lipid Res 38, 2173-2192  https://doi.org/10.1016/S0022-2275(20)34932-4
  22. Harrison EH (2005) Mechanisms of digestion and absorption of dietary vitamin A. Annu Rev Nutr 25, 87-103  https://doi.org/10.1146/annurev.nutr.25.050304.092614
  23. Bang YJ, Hu Z, Li Y et al (2021) Serum amyloid a delivers retinol to intestinal myeloid cells to promote adaptive immunity. Science 373, eabf9232 
  24. Daruwalla A, Choi EH, Palczewski K and Kiser PD (2018) Structural biology of 11-cis-retinaldehyde production in the classical visual cycle. Biochem J 475, 3171-3188  https://doi.org/10.1042/BCJ20180193
  25. Al Tanoury Z, Piskunov A and Rochette-Egly C (2013) Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res 54, 1761-1775  https://doi.org/10.1194/jlr.R030833
  26. Balmer JE and Blomhoff R (2002) Gene expression regulation by retinoic acid. J Lipid Res 43, 1773-1808  https://doi.org/10.1194/jlr.R100015-JLR200
  27. le Maire A, Teyssier C, Erb C et al (2010) A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor. Nat Struct Mol Biol 17, 801-807  https://doi.org/10.1038/nsmb.1855
  28. Altucci L and Gronemeyer H (2001) The promise of retinoids to fight against cancer. Nat Rev Cancer 1, 181-193  https://doi.org/10.1038/35106036
  29. Pohl E and Tomlinson CWE (2020) Classical pathways of gene regulation by retinoids. Methods Enzymol 637, 151-173  https://doi.org/10.1016/bs.mie.2020.03.008
  30. Zhang R, Wang Y, Li R and Chen G (2015) Transcriptional factors mediating retinoic acid signals in the control of energy metabolism. Int J Mol Sci 16, 14210-14244  https://doi.org/10.3390/ijms160614210
  31. Schug TT, Berry DC, Shaw NS, Travis SN and Noy N (2007) Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129, 723-733  https://doi.org/10.1016/j.cell.2007.02.050
  32. Rieck M, Meissner W, Ries S, Muller-Brusselbach S and Muller R (2008) Ligand-mediated regulation of peroxisome proliferator-activated receptor (PPAR) β/δ: a comparative analysis of PPAR-selective agonists and all-trans retinoic acid. Mol Pharmacol 74, 1269-1277  https://doi.org/10.1124/mol.108.050625
  33. Erkelens MN and Mebius RE (2017) Retinoic acid and immune homeostasis: a balancing act. Trends Immunol 38, 168-180  https://doi.org/10.1016/j.it.2016.12.006
  34. Molenaar R, Knippenberg M, Goverse G et al (2011) Expression of retinaldehyde dehydrogenase enzymes in mucosal dendritic cells and gut-draining lymph node stromal cells is controlled by dietary vitamin A. J Immunol 186, 1934-1942  https://doi.org/10.4049/jimmunol.1001672
  35. Hammerschmidt SI, Ahrendt M, Bode U et al (2008) Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J Exp Med 205, 2483 
  36. Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C and Song SY (2004) Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527-538  https://doi.org/10.1016/j.immuni.2004.08.011
  37. Sanders TJ, McCarthy NE, Giles EM et al (2014) Increased production of retinoic acid by intestinal macrophages contributes to their inflammatory phenotype in patients with Crohn's disease. Gastroenterology 146, 1278-1288  https://doi.org/10.1053/j.gastro.2014.01.057
  38. Magnusson MK, Brynjolfsson SF, Dige A et al (2015) Macrophage and dendritic cell subsets in IBD: ALDH+ cells are reduced in colon tissue of patients with ulcerative colitis regardless of inflammation. Mucosal Immunol 9, 171-182  https://doi.org/10.1038/mi.2015.48
  39. D'Ambrosio DN, Clugston RD and Blaner WS (2011) Vitamin A metabolism: an update. Nutrients 3, 63-103  https://doi.org/10.3390/nu3010063
  40. Klebanoff CA, Spencer SP, Torabi-Parizi P et al (2013) Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells. J Exp Med 210, 1961-1976  https://doi.org/10.1084/jem.20122508
  41. Yokota A, Takeuchi H, Maeda N et al (2009) GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity. Int Immunol 21, 361-377  https://doi.org/10.1093/intimm/dxp003
  42. Manicassamy S, Ravindran R, Deng J et al (2009) Toll-like receptor 2-dependent induction of vitamin A-metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity. Nat Med 15, 401-409  https://doi.org/10.1038/nm.1925
  43. Zeng R, Oderup C, Yuan R et al (2013) Retinoic acid regulates the development of a gut-homing precursor for intestinal dendritic cells. Mucosal Immunol 6, 847-856  https://doi.org/10.1038/mi.2012.123
  44. Goverse G, Molenaar R, Macia L et al (2017) Dietderived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. J Immunol 198, 2172-2181  https://doi.org/10.4049/jimmunol.1600165
  45. Huq MDM, Tsai NP, Gupta P and Wei LN (2006) Regulation of retinal dehydrogenases and retinoic acid synthesis by cholesterol metabolites. EMBO J 25, 3203 
  46. Jaensson-Gyllenback E, Kotarsky K, Zapata F et al (2011) Bile retinoids imprint intestinal CD103+ dendritic cells with the ability to generate gut-tropic T cells. Mucosal Immunol 4, 438 
  47. Hiemstra IH, Beijer MR, Veninga H et al (2014) The identification and developmental requirements of colonic CD169+ macrophages. Immunology 142, 269-278  https://doi.org/10.1111/imm.12251
  48. Erkelens MN, Goverse G, Konijn T et al (2020) Intestinal macrophages balance inflammatory expression profiles via vitamin A and dectin-1-mediated signaling. Front Immunol 11, 551 
  49. Ahmad SM, Haskell MJ, Raqib R and Stephensen CB (2009) Markers of innate immune function are associated with vitamin A stores in men. J Nutr 139, 377-385  https://doi.org/10.3945/jn.108.100198
  50. Kim MH, Taparowsky EJ and Kim CH (2015) Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. Immunity 43, 107-119  https://doi.org/10.1016/j.immuni.2015.06.009
  51. Svensson M, Johansson-Lindbom B, Zapata F et al (2007) Retinoic acid receptor signaling levels and antigen dose regulate gut homing receptor expression on CD8+ T cells. Mucosal Immunol 1, 38-48  https://doi.org/10.1038/mi.2007.4
  52. Mora JR, Iwata M, Eksteen B et al (2006) Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157-1160  https://doi.org/10.1126/science.1132742
  53. Sun CM, Hall JA, Blank RB et al (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204, 1775-1785  https://doi.org/10.1084/jem.20070602
  54. Coombes JL, Siddiqui KRR, Arancibia-Carcamo CV et al (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β- and retinoic acid-dependent mechanism. J Exp Med 204, 1757-1764  https://doi.org/10.1084/jem.20070590
  55. Surman SL, Jones BG, Sealy RE, Rudraraju R and Hurwitz JL (2014) Oral retinyl palmitate or retinoic acid corrects mucosal IgA responses toward an intranasal influenza virus vaccine in vitamin A deficient mice. Vaccine 32, 2521-2524  https://doi.org/10.1016/j.vaccine.2014.03.025
  56. Hall JA, Cannons JL, Grainger JR et al (2011) Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha. Immunity 34, 435-447  https://doi.org/10.1016/j.immuni.2011.03.003
  57. Depaolo RW, Abadie V, Tang F et al (2010) Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471, 220-224  https://doi.org/10.1038/nature09849
  58. Culligan EP, Sleator RD, Marchesi JR and Hill C (2014) Metagenomic identification of a novel salt tolerance gene from the human gut microbiome which encodes a membrane protein with homology to a brp/blh-family β-carotene 15,15'-monooxygenase. PLoS One 9, e103318 
  59. Srinivasan K and Buys EM (2019) Insights into the role of bacteria in vitamin A biosynthesis: Future research opportunities. Crit Rev Food Sci Nutr 59, 3211-3226  https://doi.org/10.1080/10408398.2018.1546670
  60. Grolier P, Borel P, Duszka C et al (1998) The bioavailability of α- and β-carotene is affected by gut microflora in the rat. Br J Nutr 80, 199-204  https://doi.org/10.1017/s0007114598001111
  61. Kwon SK, Kim BK, Song JY et al (2013) Genomic makeup of the marine flavobacterium nonlabens (donghaeana) dokdonensis and identification of a novel class of rhodopsins. Genome Biol Evol 5, 187-199  https://doi.org/10.1093/gbe/evs134
  62. Hong SH, Ngo HPT, Nam HK, Kim KR, Kang LW and Oh DK (2016) Alternative biotransformation of retinal to retinoic acid or retinol by an aldehyde dehydrogenase from Bacillus cereus. Appl Environ Microbiol 82, 3940-3946  https://doi.org/10.1128/AEM.00848-16
  63. Woo V, Eshleman EM, Hashimoto-Hill S et al (2021) Commensal segmented filamentous bacteria-derived retinoic acid primes host defense to intestinal infection. Cell Host Microbe 29, 1744-1756  https://doi.org/10.1016/j.chom.2021.09.010
  64. Grizotte-Lake M, Zhong G, Duncan K et al (2018) Commensals suppress intestinal epithelial cell retinoic acid synthesis to regulate interleukin-22 activity and prevent microbial dysbiosis. Immunity 49, 1103-1115  https://doi.org/10.1016/j.immuni.2018.11.018
  65. Cao YG, Bae S, Glickman JN et al (2022) Faecalibaculum rodentium remodels retinoic acid signaling to govern eosinophil-dependent intestinal epithelial homeostasis. Cell Host Microbe 30, 1295-1310  https://doi.org/10.1016/j.chom.2022.07.015
  66. Konieczna P, Ferstl R, Ziegler M et al (2013) Immunomodulation by bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms. PLoS One 8, e62617 
  67. Hu Z, Bang YJ, Ruhn KA and Hooper LV (2019) Molecular basis for retinol binding by serum amyloid A during infection. Proc Natl Acad Sci U S A 116, 19077-19082  https://doi.org/10.1073/pnas.1910713116
  68. Gattu S, Bang YJ, Pendse M et al (2019) Epithelial retinoic acid receptor β regulates serum amyloid A expression and vitamin A-dependent intestinal immunity. Proc Natl Acad Sci U S A 166, 10911-10916  https://doi.org/10.1073/pnas.1812069116
  69. Labuda J and Harrison OJ (2021) sLRP1'in up retinol keeps the gut SAAfe. Immunity 54, 2447-2449  https://doi.org/10.1016/j.immuni.2021.10.013
  70. Harris TA, Gattu S, Propheter DC et al (2019) Resistin-like molecule α provides vitamin-A-dependent antimicrobial protection in the skin. Cell Host Microbe 25, 777-788  https://doi.org/10.1016/j.chom.2019.04.004
  71. Iyer N, Grizotte-Lake M, Duncan K et al (2020) Epithelium intrinsic vitamin A signaling co-ordinates pathogen clearance in the gut via IL-18. PLoS Pathog 16, e1008360 
  72. Greenstein RJ, Su L, Shahidi A, Brown WD, Clifford A and Brown ST (2014) Unanticipated mycobacterium tuberculosis complex culture inhibition by immune modulators, immune suppressants, a growth enhancer, and vitamins A and D: clinical implications. J Glob Infect Dis 26, 37-43  https://doi.org/10.1016/j.ijid.2014.01.026
  73. Hibberd MC, Wu M, Rodionov DA et al (2017) The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Sci Transl Med 9, eaal4069