• Title/Summary/Keyword: microbial engineering

Search Result 1,539, Processing Time 0.032 seconds

Microbial Fuel Cells for Bioenergy Generation and Wastewater Treatment (바이오에너지 생산 및 폐수처리를 위한 미생물연료전지)

  • Nah, Jaw-Woon;Roh, Sung-Hee
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.567-578
    • /
    • 2013
  • A microbial fuel cell (MFC) is a bio-electrochemical device that converts chemical energy in the chemical bonds in organic compounds to electrical energy through catalytic reactions of microorganisms under anaerobic conditions. Power density and Coulombic efficiency are significantly affected by the types of microbe in the anodic chamber of an MFC, configurations of the system and operating conditions. The achievable power output from MFC increased remarkably by modifying their designs such as the optimization of MFC configurations, the physical and chemical operating conditions, and the choice of biocatalysts. This article presents a critical review on the recent advances made in MFC research with the emphasis on MFC configurations, optimization of important operating parameters, performances and future applications of MFC.

Differences in Biogeochemical Properties and Microbial Activities in Stream Segments with Changes in Land-use Type

  • Kim, Jinhyun;Jang, Inyoung;Lee, Hyunjin;Kang, Hojeong
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.247-254
    • /
    • 2015
  • Changes in land-use type can affect soil and water properties in stream ecosystems. This study examined the effects of different land-use types on biogeochemical properties and microbial activities of a stream. We collected water and sediment samples in a stream at three different sites surrounded by varying land-use types; a forest, a radish field and a rice paddy. Nitrogen contents, such as nitrate, nitrite and total nitrogen in the stream water body, showed significant differences among the sampling sites. The highest nitrogen values were recorded at the site surrounded by cropland, as fertilizer runoff impacted the stream. Soil organic matter content in the sediment showed significant differences among sites, with the highest content exhibited at the forest mouth site. These differences might be due to the organic matter in surrounding terrestrial ecosystems. Microbial activities determined by extracellular enzyme activities showed similar values throughout all sites in the water body; however, the activities in the sediments exhibited the highest values near the forest site and mirrored the soil organic matter content values. From these results, we conclude that different land-use types are important factors affecting water and sediment properties in stream ecosystems.

Nitrogen removal and electrochemical characteristics depending on separators of two-chamber microbial fuel cells

  • Lee, Kang-yu;Choi, In-kwon;Lim, Kyeong-ho
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.443-448
    • /
    • 2019
  • The present study was conducted to compare the voltage generation in two-chamber microbial fuel cells (MFCs) with a biocathode where nitrate and oxygen are used as a terminal electron acceptors (TEA) and to investigate the nitrogen removal and the electrochemical characteristics depending on the separators of the MFCs for denitrification. The maximum power density in a biocathode MFC using an anion exchange membrane (AEM) was approximately 40% lower with the use of nitrate as a TEA than when using oxygen. The MFC for denitrification using an AEM allows acetate ($CH_3COO^-$) as a substrate and nitrate ($NO_3{^-}$) as a TEA to be transported to the opposite sides of the chamber through the AEM. Therefore, heterotrophic denitrification and electrochemical denitrification occurred simultaneously at the anode and the cathode, resulting in a higher COD and nitrate removal rate and a lower maximum power density. The MFC for the denitrification using a cation exchange membrane (CEM) does not allow the transport of acetate and nitrate. Therefore, as oxidation of organics and electrochemical denitrification occurred at the anode and at the cathode, respectively, the MFC using a CEM showed a higher coulomb efficiency, a lower COD and nitrate removal rate in comparison with the MFC using an AEM.

Enhancing anaerobic digestion of vegetable waste and cellulose by bioaugmentation with rumen culture

  • Jo, Yeadam;Hwang, Kwanghyun;Lee, Changsoo
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.213-221
    • /
    • 2019
  • Anaerobic digestion (AD) has been widely used to valorize food waste (FW) because of its ability to convert organic carbon into $CH_4$ and $CO_2$. Korean FW has a high content of fruits and vegetables, and efficient hydrolysis of less biodegradable fibers is critical for its complete stabilization by AD. This study examined the digestates from different anaerobic digesters, namely Rs, Rr, and Rm, as the inocula for the AD of vegetable waste (VW) and cellulose (CL): Rs inoculated with anaerobic sludge from an AD plant, Rr inoculated with rumen fluid, and Rm inoculated with anaerobic sludge and augmented with rumen fluid. A total of six conditions ($3\;inocula{\times}2\;substrates$) were tested in serial subcultures. Biogas yield was higher in the runs inoculated with Rm than in the other runs for both VW (up to 1.10 L/g VS added) and CL (up to 1.05 L/g VS added), and so was biogas production rate. The inocula had different microbial community structures, and both substrate type and inoculum source had a significant effect on the formation and development of microbial community structures in the subcultures. The overall results suggest that the bioaugmentation with rumen microbial consortium has good potential to enhance the anaerobic biodegradability of VW, and thereby can help more efficiently digest high fiber-content Korean FW.

Effect of Pectinase in Grape (Red Glove) Production and Quality of Red Wine (포도(Red Glove)의 Pectinase 처리가 레드와인의 생산과 품질에 미치는 영향)

  • Lee, Jung-Chang;Choi, Yong-Keun;Park, Jung-Soo;Jung, Hee-Hoon;Yi, Dong-Hee;Choe, Tae-Boo;Kang, Sang-Mo;Kim, Hyung-Joo
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.2
    • /
    • pp.264-270
    • /
    • 2012
  • The effect of pectinase on wine production and quality during wine fermentation was investigated in an experiment a laboratory scale (2 kg grape/5 L tank). Experimental results show that the enzyme-treated sample displayed a 13% higher rate of grape juice production compared to control (enzyme-untreated). In the case of color analysis, the addition of pectinase improved the color quality of wine in terms of both color intensity and hue values. The results show that pectinase enhanced both dark-red color and clarity of wine during the fermentation period. Further, the methanol concentration of the wine sample treated with pectinase reached 225.32 mg/L (control: 100.72 mg/L) due to hydrolysis of pectin. Sensory analysis after fermentation showed that pectinase significantly increased the color, smell, taste, and touch intensity scores of wines compared to control.

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

Analysis of Microbial Community in the TPH-Contaminated Groundwater for Air Sparging using Terminal-Restriction Fragment Length Polymorphism (유류오염대수층 공기분사공정상의 미생물 제한효소다형성법 적용 평가)

  • Lee, Jun-Ho;Lee, Sang-Hoon;Cho, Jae-Chang;Park, Kap-Song
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.590-598
    • /
    • 2006
  • In-situ Air sparging (IAS) is a groundwater remediation technique, in which organic contaminants volatilize into air form the saturated to vadose zone. This study was carried out to evaluate the effect of sludge and soil microbial community structure on air sparging of Total Petroleum Hydrocarbons (TPH) contaminated groundwater soils. In the laboratory, diesel (10,000 mg TPH/kg) contaminated saturated soil. The Air was injected in intermittent (Q=1500 mL/min, 10 minute injection and 10 minute idle) modes. For Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis of eubacterial communities in sludge of wastewater treatment plants and soil of experiment site, the 16S rDNA was amplified by Polymerase Chain Reaction (PCR) from the sludge and the soil. The obtained 16S rDNA fragments were digested with Msp I and separated by electrophoresis gel. We found various sequence types for experiment with sludge soil samples that were closely related to Agrococcus, Flavobacterium, Thermoanaerobacter, Flexibacter and Shewanella, etc, in the clone library. The results of the present study suggests that T-RFLP method may be applied as a useful tool for the monitoring in the TPH contaminated soil the fate of microorganisms in natural microbial community.

454 Pyrosequencing Analysis of Bacterial Diversity Revealed by a Comparative Study of Soils from Mining Subsidence and Reclamation Areas

  • Li, Yuanyuan;Chen, Longqian;Wen, Hongyu;Zhou, Tianjian;Zhang, Ting;Gao, Xiali
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.313-323
    • /
    • 2014
  • Significant alteration in the microbial community can occur across reclamation areas suffering subsidence from mining. A reclamation site undergoing fertilization practices and an adjacent coal-excavated subsidence site (sites A and B, respectively) were examined to characterize the bacterial diversity using 454 high-throughput 16S rDNA sequencing. The dominant taxonomic groups in both the sites were Proteobacteria, Acidobacteria, Bacteroidetes, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, and Firmicutes. However, the bacterial communities' abundance, diversity, and composition differed significantly between the sites. Site A presented higher bacterial diversity and more complex community structures than site B. The majority of sequences related to Proteobacteria, Gemmatimonadetes, Chloroflexi, Nitrospirae, Firmicutes, Betaproteobacteria, Deltaproteobacteria, and Anaerolineae were from site A; whereas those related to Actinobacteria, Planctomycetes, Bacteroidetes, Verrucomicrobia, Gammaproteobacteria, Nitriliruptoria, Alphaproteobacteria, and Phycisphaerae originated from site B. The distribution of some bacterial groups and subgroups in the two sites correlated with soil properties and vegetation due to reclamation practice. Site A exhibited enriched bacterial community, soil organic matter (SOM), and total nitrogen (TN), suggesting the presence of relatively diverse microorganisms. SOM and TN were important factors shaping the underlying microbial communities. Furthermore, the specific plant functional group (legumes) was also an important factor influencing soil microbial community composition. Thus, the effectiveness of 454 pyrosequencing in analyzing soil bacterial diversity was validated and an association between land ecological system restoration, mostly mediated by microbial communities, and an improvement in soil properties in coal-mining reclamation areas was suggested.

Identification of Amino-Acids Residues for Key Role in Dextransucrase Activity of Leuconostoc mesenteroides B-742CB

  • Ryu, Hwa-Ja;Kim, Do-Man;Seo, Eun-Seong;Kang, Hee-Kyung;Lee, Jin-Ha;Yoon, Seung-Heon;Cho, Jae-Young;Robyt, John-F.;Kim, Do-Won;Chang, Suk-Sang;Kim, Seung-Heuk;Kimura, Atsuo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1075-1080
    • /
    • 2004
  • Dextransucrase (DSRB742) from Leuconostoc mesenteroides NRRL B-742CB is a glucosyltransferase that catalyzes the synthesis of dextran using sucrose, or the synthesis of oligosaccharides when acceptor molecules, like maltose, are present. The DSRB742 gene (dsrB742) was cloned and the properties were characterized. In order to identify critical amino acid residues, the DSRB742 amino acid sequence was aligned with glucosyltransferase sequences, and three amino acid residues reported as sucrose binding amino acids in Streptococcus glucosyltransferases were selected for site-directed mutagenesis experiments. Asp-533, Asp-536, and His-643 were independently replaced with Ala or Asn. D533A and D536A dextransucrases showed reduced dextran synthesis activities, 2.3% and 40.8% of DSRB742 dextransucrase, respectively, and D533N, D536N, H643A, end H643N dextransucrases showed complete suppression of dextran synthesis activities altogether. Additionally, D536N dextransucrase showed complete suppression of oligosaccharide synthesis activities. However, modifications at Asp-533 or at His-643 retained acceptor reaction activities in the range of 8.4% to 21.3% of DSRB742 acceptor reaction activity. Thus at least two carboxyl groups of Asp-533 and Asp-536, and His-643 as a proton donor, are essential for the catalysis process.

The Effect of Changes in Soil Microbial Communities on Geochemical Behavior of Arsenic (토양 미생물 군집의 변화가 비소의 지구화학적 거동에 미치는 영향)

  • Eui-Jeong Hwang;Yejin Choi;Hyeop-Jo Han;Daeung Yoon;Jong-Un Lee
    • Economic and Environmental Geology
    • /
    • v.57 no.3
    • /
    • pp.305-317
    • /
    • 2024
  • To investigate the effect of changes in microbial communities on arsenic release in soil, experiments were conducted on arsenic-contaminated soils (F1, G7, and G10). The experiments involved three groups of the experimental sets; ① BAC: sterilized soil + Bacillus fungorum, ② IND: indigenous bacteria, and ③ MIX: indigenous bacteria + B. fungorum, and incubated them for seven weeks using lactate as a carbon source under anaerobic conditions. The experimental results showed that higher concentrations of arsenic were released from the IND and MIX soils, where indigenous bacterial communities existed, compared to BAC. Significantly higher levels of arsenic were released from the G10 soil, which showed higher pH, compared to the F1 and G7 soils. In the G10 soil, unlike other soils, the proportion of As(III) among the released arsenic was also low. These results may be attributed to differences in microbial community composition that vary depending on the soil. By the seventh week, the diversity of microbial species in the IND and MIX soils had significantly decreased, with dominant orders such as Eubacteriales and Bacillales thriving. Bacteroidales in the seventh week of the MIX in the F1 soil, Rummeliibacillus in the seventh week of the IND and MIX of the G7 soil, and Enterobacterales in the IND and MIX of the G10 soil were dominant. At present, it is not known which mechanisms of microbial community changes affect the geochemical behavior of arsenic; however, these results indicate that microbiome in the soil may function as one of the factors regulating arsenic release.