Browse > Article
http://dx.doi.org/10.14478/ace.2013.1100

Microbial Fuel Cells for Bioenergy Generation and Wastewater Treatment  

Nah, Jaw-Woon (Department of Polymer Science and Engineering, Sunchon National University)
Roh, Sung-Hee (Department of Chemical and Biochemical Engineering, Chosun University)
Publication Information
Applied Chemistry for Engineering / v.24, no.6, 2013 , pp. 567-578 More about this Journal
Abstract
A microbial fuel cell (MFC) is a bio-electrochemical device that converts chemical energy in the chemical bonds in organic compounds to electrical energy through catalytic reactions of microorganisms under anaerobic conditions. Power density and Coulombic efficiency are significantly affected by the types of microbe in the anodic chamber of an MFC, configurations of the system and operating conditions. The achievable power output from MFC increased remarkably by modifying their designs such as the optimization of MFC configurations, the physical and chemical operating conditions, and the choice of biocatalysts. This article presents a critical review on the recent advances made in MFC research with the emphasis on MFC configurations, optimization of important operating parameters, performances and future applications of MFC.
Keywords
microbial fuel cell; electrical energy; operating condition; power density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. E. Logan and K. Rabaey, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies, Sci., 337, 686 (2012).   DOI   ScienceOn
2 H. Moon, I. S. Chang, and B. H. Kim, Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell, Bioresource Technol., 97, 621 (2006).   DOI   ScienceOn
3 Y. Choi, E. Jung, S. Kim, and S. Jung, Membrane fluidity sensoring microbial fuel cell, Bioelectrochem., 59, 121 (2003).   DOI   ScienceOn
4 D. H. Park and J. G. Zeikus, Electricity generation in microbial fuel cells using neutral red as an electronophore, Appl. Environ. Microbiol., 66, 1292 (2000).   DOI   ScienceOn
5 S. H. Roh, S. W. Lee, K. R. Kim, and S. I. Kim, Electricity generation from dairy wastewater using microbial fuel cell, J. Korean Ind. Eng. Chem., 23, 297 (2012).
6 B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Alterman, W. Verstraete, and K. Rabaey, Microbial fuel cells: methodology and technology, Environ. Sci. Technol., 40, 5181 (2006).   DOI   ScienceOn
7 J. K. Jang, T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, and B. H. Kim, Construction and operation of a novel mediator and membrane-less microbial fuel cell, Process Biochem., 39, 1007 (2004).   DOI   ScienceOn
8 G. C. Gil, I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim, Operational parameters affecting the prformannce of a mediator-less microbial fuel cell, Biosens. Bioelectron., 18, 327 (2003).   DOI   ScienceOn
9 H. Liu and B. E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol., 38, 4040 (2004).   DOI   ScienceOn
10 S. Oh, B. Min, and B. E. Logan, Cathode performance as a factor in electricity generation in microbial fuel cells, Environ. Sci. Technol., 38, 4900 (2004).   DOI   ScienceOn
11 Z. W. Du, H. R. Li, and T. Y. Gu, A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy, Biotechnol. Adv., 25, 464 (2007).   DOI   ScienceOn
12 K. Rabaey and W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends Biotechnol., 23, 291 (2005).   DOI   ScienceOn
13 B. E. Logan and J. M. Regan, Electricity-producing bacterial communities in microbial fuel cells, Trends Microbiol., 14, 512 (2006).   DOI   ScienceOn
14 I. S. Chang, H. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim, Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells, J. Microbiol. Biotechnol., 16, 163 (2006).
15 D. R. Lovley, Microbial fuel cells: novel microbial physiologies and engineering approaches, Curr. Opin. Biotechnol., 17, 327 (2006).   DOI   ScienceOn
16 B. H. Kim, I. S. Chang, and G. M. Gadd, Challenges in microbial fuel cell development and operation, Appl. Microbiol. Biotechnol., 76, 485 (2007).   DOI   ScienceOn
17 D. R. Lovley, Bug juice: harvesting electricity with microorganisms, Nat. Rev. Microbiol., 4, 497 (2006).   DOI   ScienceOn
18 U. Schorder, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency, Phys. Chem. Chem. Phys., 9, 2619 (2007).   DOI   ScienceOn
19 U. Schörder, J. Niebn, and F. Scholz, A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude, Angew. Chem. Int. Ed., 42, 2880 (2003).   DOI   ScienceOn
20 P. Clauwaert, D. Van der Ha, N. Boon, K. Verbeken, M. Verhaege, K. Rabaey, and W. Verstrate, Open air biocathode enables effective electricity generation with microbial fuel cells, Environ. Sci. Technol., 41, 7564 (2007).   DOI   ScienceOn
21 Y. Qiao, C. M. Li, S. J. Bao, and Q. L. Bao, Carbon nanotube/ polyaniline composite as anode aterial for microbial fuel cells, J. Power Sources, 170, 79 (2007).   DOI   ScienceOn
22 S. I. Kim, J. W. Lee, and S. H. Roh, Performance of polyacrylonitrile- carbon nanotubes composite on carbon cloth as electrode material for microbial fuel cells, J. Nanosci. Nanotechnol., 11, 1364 (2011).   DOI   ScienceOn
23 J. Xu, G. P. Sheng, H. W. Luo, W. W. Li, L. F. Wang, and H. Q. Yu, Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell, Water Res., 46, 1817 (2012).   DOI   ScienceOn
24 Z. Li, L. Yao, L. Kong, and H. Liu, Electricity generation using a baffled microbial fuel cell convenient for stacking, Bioresource Technol., 99, 1650 (2008).   DOI   ScienceOn
25 D. H. Park and J. G. Zeikus, Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation, J. Bacteriol., 181, 2403 (1999).
26 S. K. Chaudhuri and D. R. Lovley, Electricity generation by direct oxidation of glucose in mediator less microbial fuel cells, Nat. Biotechnol., 21, 1229 (2003).   DOI   ScienceOn
27 K. Rabaey, P. Clauwaert, P. Aelterman, and W. Verstraete, Tubular microbial fuel cells for efficient electricity generation, Environ. Sci. Technol., 39, 8077 (2005).   DOI   ScienceOn
28 K. Rabaey, G. Lissens, S. D. Siciliano, and W. Verstraete, A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett., 25, 1531 (2003).   DOI   ScienceOn
29 B. Min, S. Cheng, and B. E. Logan, Electricity generation using membrane and salt bridge microbial fuel cells, Water Res., 39, 1675 (2005).   DOI   ScienceOn
30 G. M. Delaney, H. P. Bennetto, J. R. Mason, S. D. Roller, J. L. Stirling, and B. F. Thurston, Electron-transfer coupling in microbial fuel cells, J. Chem. Tech. Biotechnol., 34B, 13 (1984).
31 J. R. Kim, S. H. Jung, J. M. Regan, and B. E. Logan, Electricity generation and microbial community analysis of alcohol powered microbial fuel cells, Bioresource Technol., 98, 2568 (2007).   DOI   ScienceOn
32 Z. He, N. Wagner, S. D. Minteer, and L. T. Angenent, An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy, Environ. Sci. Technol., 40, 5212 (2006).   DOI   ScienceOn
33 P. Aelterman, K. Rabaey, H. T. Pham, N. Boon, and W. Verstraete, Continuous electricity generation at high voltages and currents using stacked microbial fuel cells, Environ. Sci. Technol., 40, 3388 (2006).   DOI   ScienceOn
34 Z. He, S. D. Minteer, and L. T. Angenent, Electricity generation from artificial wastewater using an upflow microbial fuel cell, Environ. Sci. Technol., 39, 5262 (2005).   DOI   ScienceOn
35 R. A. Bullen, T. Arnot, J. B. Lakeman, and F. C. Walsh, Biofuel cells and their development, Biosens. Bioelectron, 21, 2015 (2006).   DOI   ScienceOn
36 E. H. Yu, S. Cheng, K. Scott, and B. Logan, Microbial fuel cell performance with non-Pt cathode catalysts, J. Power Sources, 171, 275 (2007).   DOI   ScienceOn
37 S. Freguia, K. Rabaey, Z. Yuan, and J. Keller, Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation, Environ. Sci. Technol., 41, 2915 (2007).   DOI   ScienceOn
38 K. Rabaey, N. Boon, M. Hofte, and W. Verstraete, Microbial phenazine production enhances electron transfer in biofuel cells, Environ. Sci. Technol., 39, 3401 (2005).   DOI   ScienceOn
39 S. Cheng, H. Liu, and B. E. Logan, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Environ. Sci. Techol., 40, 364 (2006).   DOI   ScienceOn
40 S. Freguia, K. Rabaey, Z. Yuan, and J. Keller, Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells, Electrochem. Acta., 53, 598 (2007).   DOI   ScienceOn
41 M. Rosenbaum, F. Zhao, M. Quaas, H. Wulff, U. Schörder, and F. Scholz, Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells, Appl. Catal. B Environ., 74, 261 (2007).   DOI   ScienceOn
42 B. H. Kim and H. G. Woo, Dehydrocoupling, redistributive coupling, and addition of main group 4 hydrides, Adv. Organomet. Chem., 52, 143 (2005).
43 D. H. Park and J. G. Zeikus, Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens, Appl. Microbiol. Biotechnol., 59, 58 (2002).   DOI   ScienceOn
44 K. T. Jeng, C. C. Chien, N. Y. Hsu, W. M. Huang, S. D. Chiou, and S. H. Lin, Fabrication and impedance tudies of DMFC anode incorporated with CNT-supported high-metal-content electrocatalyst, J. Power Sources, 164, 33 (2007).   DOI   ScienceOn
45 G. An, P. Yu, L. Mao, Z. Sun, Z. Liu, and S. Miao, Synthesis of PtRu/carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells, Carbon, 45, 536 (2007).   DOI   ScienceOn
46 Y. Zou, C. Xiang, L. Yang, L. Sun, F. Xu, and Z. Cao, A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material, J. Hydrogen Energy, 33, 4856 (2008).   DOI   ScienceOn
47 A. ter Heijne, H. V. M. Hamelers, V. de Wilde, R. A. Rozendal, and C. J. N. Buisman, A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells, Environ. Sci. Technol., 40, 5200 (2006).   DOI   ScienceOn
48 A. Rhoads, H. Beyenal, and Z. Lewandowski, Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant, Environ. Sci. Technol., 39, 4666 (2005).   DOI   ScienceOn
49 F. Zhao, U. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, and I. Herrmann, Challenges and constraints of using oxygen cathodes in microbial fuel cells, Environ. Sci. Technol., 40, 5193 (2006).   DOI   ScienceOn
50 Z. He and L. T. Angenent, Application of bacterial biocathodes in microbial fuel cells, Electroanalysis, 18, 2009 (2006).   DOI   ScienceOn
51 L. Cindrella and A. M. Kannan, Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions, J. Power Sources, 193, 447 (2009).   DOI   ScienceOn
52 E. H. Yu, S. Cheng, K. Scott, and B. Logan, Microbial fuel cell performance with non-Pt cathode catalysts, J. Power Sources, 171, 275 (2007).   DOI   ScienceOn
53 F. Zhao, F. Harnisch, U. Schroder, F. Scholz, P. Bogdanoff, and I. Herrmann, Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells, Electrochem. Commun., 7, 1405 (2005).   DOI   ScienceOn
54 P. Clauwaert, K. Rabaey, P. Aelterman, L. de Schamphelaire, T. H. Pham, P. Boeckx, N. Boon, and W. Verstraete, Biological denitrification in microbial fuel cells, Environ. Sci. Technol., 41, 3354 (2007).   DOI   ScienceOn
55 D. H. Park, S. K. Kim, I. H. Shin, and Y. J. Jeong, Electricity production in biofuel cell using modified graphite electrode with neutral red, Biotechnol. Lett., 22, 1301 (2000).   DOI   ScienceOn
56 B. Min and B. E. Logan, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell, Environ. Sci. Technol., 38, 5809 (2004).   DOI   ScienceOn
57 S. E. Oh and B. E. Logan, Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells, Appl. Microbiol. Biotechnol., 70, 162 (2006).   DOI   ScienceOn
58 S. Cheng, H. Liu, and B. E. Logan, Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing, Environ. Sci. Technol., 40, 2426 (2006).   DOI   ScienceOn
59 D. R. Bond, D. E. Holmes, L. M. Tender, and D. R. Lovley, Electrode-reducing microorganisms that harvest energy from marine sediments, Science, 295, 483 (2002).   DOI   ScienceOn
60 H. Liu, S. Cheng, and B. E. Logan, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration, Environ. Sci. Technol., 39, 5488 (2005).   DOI   ScienceOn
61 K. Rabaey, W. Ossieur, M. Verhaege, and W. Verstraete, Continuous microbial fuel cells convert carbohydratesto electricity, Water Sci. Technol., 52, 515 (2005).
62 S. V. Mohan, R. Saravanan, S. V. Raghavulu, G. Mohanakrishna, and P. N. Sarma, Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte, Bioresource Technol., 99, 596 (2008).   DOI   ScienceOn
63 H. Liu, R. Ramnarayanan, and B. E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol., 38, 2281 (2004).   DOI   ScienceOn
64 H. Liu, S. Cheng, and B. E. Logan, Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell, Environ. Sci. Technol., 39, 658 (2005).   DOI   ScienceOn
65 S. Cheng, H. Liu, and B. E. Logan, Increased performance of single- chamber microbial fuel cells using an improved cathode structure, Electrochem. Commun., 8, 489 (2006).   DOI   ScienceOn
66 S. Cheng and B. E. Logan, Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells, Electrochem. Commun., 9, 492 (2007).   DOI   ScienceOn
67 T. Sharma, L. M. Reddy, T. S. Chandra, and S. Ramaprabhu, Development of carbon nanotubes and nanofluids based microbial fuel cell, J. Hydrogen Energy, 33, 6749 (2008).   DOI   ScienceOn
68 B. Logan and S. Cheng, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells, Environ. Sci. Technol., 41, 3341 (2007).   DOI   ScienceOn
69 J. Niessen, U. Schroder, M. Rosenbaum, and F. Scholz, Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells, Electrochem. Commun., 6, 571 (2004).   DOI   ScienceOn
70 Y. Qiao, S. J. Bao, C. M. Li, X. Q. Cui, Z. S. Lu, and J. Guo, Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells, ACS Nano., 2, 113 (2008).   DOI   ScienceOn
71 S. R. Crittenden, C. J. Sund, and J. J. Sumner, Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer, Langmuir, 22, 9473 (2006).   DOI   ScienceOn
72 M. Adachi, T. Shimomura, M. Komatsu, H. Yakuwa, and A. Miya, A novel mediator-polymer-modified anode for microbial fuel cells, Chem. Commun., 17, 2055 (2008).
73 R. A. Rozendal, H. V. M. Hamelers, and C. J. N. Buisman, Effects of membrane cation transport on pH and microbial fuel cell performance, Environ. Sci. Technol., 40, 5206 (2006).   DOI   ScienceOn
74 C. I. Torres, A. K. Marcus, and B. E. Rittmann, Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria, Biotechnol. Bioeng., 100, 872 (2008).   DOI   ScienceOn
75 D. R. Bond and D. R. Lovley, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol., 69, 1548 (2003).   DOI   ScienceOn
76 C. A. Pham, S. J. Jung, N. T. Phung, J. Lee, I. S. Chang, and B. H. Kim, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell, FEMS Microbiol. Lett., 223, 129 (2003).   DOI   ScienceOn
77 I. A. Ieropoulos, J. Greenman, C. Melhuish, and J. Hart, Comparative study of three types of microbial fuel cell, Enzyme Microb. Technol., 37, 238 (2005).   DOI   ScienceOn
78 C. A. Vega and I. Fernandez, Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens, Bioelectrochem. Bioenerg., 17, 217 (1987).   DOI   ScienceOn
79 S. A. Lee, Y. Choi, S. Jung, and S. Kim, Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans, Bioelectrochemistry, 57, 173 (2002).   DOI   ScienceOn
80 K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete, Biofuel cells select for microbial consortia that self-mediate electron transfer, Appl. Environ. Microbiol., 70, 5373 (2004).   DOI   ScienceOn
81 B. R. Ringeisen, E. Henderson, P. K. Wu, J. Pietron, R. Ray, and B. Little, High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10, Environ. Sci. Technol., 40, 2629 (2006).   DOI   ScienceOn
82 G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. Lovley, Extracellular electron transfer via microbial nanowires, Nature, 435, 1098 (2005).   DOI   ScienceOn
83 B. H. Kim, H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, and J. Lee, Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell, Appl. Microbiol. Biotechnol., 63, 672 (2004).   DOI   ScienceOn
84 T. H. Pham, J. K. Jang, I. D. Chang, and B. H. Kim, Improvement of cathode reaction of a mediator less microbial fuel cell, J. Microbiol. Biotechnol., 14, 324 (2004).
85 K. Watanabe, Recent developments in microbial fuel cell technologies for sustainable bioenergy, Biosci. Bioeng., 106, 528 (2008).   DOI   ScienceOn
86 K. P. Nevin and D. R. Lovley, Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans, Appl. Environ. Microbiol., 68, 2294 (2002).   DOI   ScienceOn
87 M. E. Hernandez and D. K. Newman, Extracellular electron transfer, Cell. Mol. Life Sci., 58, 1562 (2001).   DOI   ScienceOn
88 J. B. McKinlay and J. G. Zeikus, Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli, Appl. Environ. Microbiol., 70, 3467 (2004).   DOI   ScienceOn
89 M. J. Cooney, E. Roschi, I. W. Marison, C. Comninellis, and U. Stockar, Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: evaluation for use in a biofuel cell, Enzyme Microb. Technol., 18, 358 (1996).   DOI   ScienceOn
90 H. S. Park, B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, and I. S. Chang, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically telated to Clostridium butyricum isolated from a microbial fuel cell, Anaerobe, 7, 297 (2001).   DOI   ScienceOn
91 K. Nath and D. Das, Hydrogen from biomass, Current Sci., 85, 265 (2003).
92 Y. Han, C. Yu, and H. Liu, A microbial fuel cell as power supply for implantable medical devices, Biosens. Bioelectron, 25, 2156 (2010).   DOI   ScienceOn
93 R. A. Rozendal, H. V. M. Hamelers, R. J. Molenkmp, and J. N. Buisman, Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes, Water Res., 41, 1984 (2007).   DOI   ScienceOn
94 H. Liu, S. Grot, and B. E. Logan, Electrochemically assisted microbial production of hydrogen from acetate, Environ. Sci. Technol., 39, 4317 (2005).   DOI   ScienceOn
95 B. Tartakovsky, M. F. Manuel, V. Neburchilov, H. Wang, and S. R. Guiot, Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode, J. Power Sources, 182, 291 (2008).   DOI   ScienceOn
96 C. E. Reimers, L. M. Tender, S. Fertig, and W. Wang, Harvesting energy from the marine sediment water interface, Environ. Sci. Technol., 35, 192 (2001).   DOI   ScienceOn
97 L. M. Tender, C. E. Reimers, H. A. Stecher, D. E. Holmes, D. R. Bond, D. A. Low, K. Piblobello, S. Fertig, and D. R. Lovley, Harnessing microbially generated power on the seafloor, Nat. Biotechnol., 20, 821 (2002).   DOI   ScienceOn
98 I. S. Chang, H. Moon, J. K. Jang, and B. H. Kim, Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors, Biosens. Bioelectron., 20, 1856 (2005).   DOI   ScienceOn
99 B. H. Kim, I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim, Novel BOD (biological oxygen demand) sensor using mediator- less microbial fuel cell, Biotechnol. Lett., 25, 541 (2003).   DOI   ScienceOn