• Title/Summary/Keyword: microbial catalyst

Search Result 28, Processing Time 0.033 seconds

Effect of pH on Growth and Ethanol Production of Clostridium ljungdahlii (Clostridium ljungdahlii 성장 및 에탄올 생산에 pH가 미치는 영향)

  • Park, So Jung;Hong, Sung-Gu;Kang, Kwon-Kyoo;Kim, Young-Kee
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.562-565
    • /
    • 2011
  • In this study, we developed a bioprocess using Clostridium ljungdahlii as a biological catalyst to produce bio-ethanol, and the effect of pH on microbial growth and ethanol production was investigated. From the results of fermentation at various initial pH condition without pH control, pH of fermentation broth decreased to 4.5 within 24 h due to accumulation of by-product acetic acid and both microbial growth and ethanol production were stopped. The experimental result of initial pH 8 showed the highest microbial growth and ethanol production (0.53 g/L), since the pH drop was relatively slow. From the experiment of pH 7 maintained fermentation using pH controllable bioreactor, the maximum cell dry weight of 1.65 g/L and the maximum ethanol concentration of 1.43 g/L were obtained within 24 h. In conclusion, the C. ljungdahlii growth was enhanced by pH maintenance of neutral range, and the ethanol production was also enhanced based on the growth-associated ethanol production characteristics of C. ljungdahlii.

Non-gaseous Plasma Immersion Ion Implantation and Its Applications

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.151-151
    • /
    • 2012
  • A new plasma process, i.e., the combination of PIII&D and HIPIMS, was developed to implant non-gaseous ions into materials surface. HIPIMS is a special mode of operation of pulsed-DC magnetron sputtering, in which high pulsed DC power exceeding ~1 kW/$cm^2$ of its peak power density is applied to the magnetron sputtering target while the average power density remains manageable to the cooling capacity of the equipment by using a very small duty ratio of operation. Due to the high peak power density applied to the sputtering target, a large fraction of sputtered atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed plasma of sputtered target material by HIPIMS operation, the implantation of non-gaseous ions can be successfully accomplished. The new process has great advantage that thin film deposition and non-gaseous ion implantation along with in-situ film modification can be achieved in a single plasma chamber. Even broader application areas of PIII&D technology are believed to be envisaged by this newly developed process. In one application of non-gaseous plasma immersion ion implantation, Ge ions were implanted into SiO2 thin film at 60 keV to form Ge quantum dots embedded in SiO2 dielectric material. The crystalline Ge quantum dots were shown to be 5~10 nm in size and well dispersed in SiO2 matrix. In another application, Ag ions were implanted into SS-304 substrate to endow the anti-microbial property of the surface. Yet another bio-application was Mg ion implantation into Ti to improve its osteointegration property for bone implants. Catalyst is another promising application field of nongaseous plasma immersion ion implantation because ion implantation results in atomically dispersed catalytic agents with high surface to volume ratio. Pt ions were implanted into the surface of Al2O3 catalytic supporter and its H2 generation property was measured for DME reforming catalyst. In this talk, a newly developed, non-gaseous plasma immersion ion implantation technique and its applications would be shown and discussed.

  • PDF

Target Identification for Metabolic Engineering: Incorporation of Metabolome and Transcriptome Strategies to Better Understand Metabolic Fluxes

  • Lindley, Nic
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.60-61
    • /
    • 2004
  • Metabolic engineering is now a well established discipline, used extensively to determine and execute rational strategies of strain development to improve the performance of micro-organisms employed in industrial fermentations. The basic principle of this approach is that performance of the microbial catalyst should be adequately characterised metabolically so as to clearlyidentify the metabolic network constraints, thereby identifying the most probable targets for genetic engineering and the extent to which improvements can be realistically achieved. In order to harness correctly this potential, it is clear that the physiological analysis of each strain studied needs to be undertaken under conditions as close as possible to the physico-chemical environment in which the strain evolves within the full-scale process. Furthermore, this analysis needs to be undertaken throughoutthe entire fermentation so as to take into account the changing environment in an essentially dynamic situation in which metabolic stress is accentuated by the microbial activity itself, leading to increasingly important stress response at a metabolic level. All too often these industrial fermentation constraints are overlooked, leading to identification of targets whose validity within the industrial context is at best limited. Thus the conceptual error is linked to experimental design rather than inadequate methodology. New tools are becoming available which open up new possibilities in metabolic engineering and the characterisation of complex metabolic networks. Traditionally metabolic analysis was targeted towards pre-identified genes and their corresponding enzymatic activities within pre-selected metabolic pathways. Those pathways not included at the onset were intrinsically removed from the network giving a fundamentally localised vision of pathway functionality. New tools from genome research extend this reductive approach so as to include the global characteristics of a given biological model which can now be seen as an integrated functional unit rather than a specific sub-group of biochemical reactions, thereby facilitating the resolution of complexnetworks whose exact composition cannot be estimated at the onset. This global overview of whole cell physiology enables new targets to be identified which would classically not have been suspected previously. Of course, as with all powerful analytical tools, post-genomic technology must be used carefully so as to avoid expensive errors. This is not always the case and the data obtained need to be examined carefully to avoid embarking on the study of artefacts due to poor understanding of cell biology. These basic developments and the underlying concepts will be illustrated with examples from the author's laboratory concerning the industrial production of commodity chemicals using a number of industrially important bacteria. The different levels of possibleinvestigation and the extent to which the data can be extrapolated will be highlighted together with the extent to which realistic yield targets can be attained. Genetic engineering strategies and the performance of the resulting strains will be examined within the context of the prevailing experimental conditions encountered in the industrial fermentor. Examples used will include the production of amino acids, vitamins and polysaccharides. In each case metabolic constraints can be identified and the extent to which performance can be enhanced predicted

  • PDF

Isolation of Microorganisms for Petroleum Desulfurization and Evaluation of Its Desulfurization Activity for Diesel Oil (석유 탈황용 미생물 분리 및 디젤유에 대한 탈황능 평가)

  • Sohn, Ho-Yong;Chang, Je Hwan;Chang, Yong Keun;Chang, Ho Nam;Ryu, Hee Wook;Cho, Keoung Sook
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.53-59
    • /
    • 1996
  • For the development of biocatalysts and processes for microbial desulfurization of petroleum, more than 60 microbial strains capable of DBT(Dibenzothiophene) degradation were isolated from oil-polluted soils through 3 months of continuous and enrichment cultures. Among them, A23-3 strain could grow on DBT as the only sulfur source, while hexadecane was not utilized as a carbon source. The rate of desulfurization by A23-3 in a DBT-glucose medium was satisfactory. The addition of yeast extract or trace metal solution accelerated the rate of desulfurization about 4.5~6.5 times. In case of actual diesel oil treatment, the specific rate of DBT degradation was $0.045g-DBT\;per\;g-cell{\cdot}hour$. A number of aromatic compounds heavier than $C_{14}$ in diesel oil were also degraded by A23-3. A23-3 strain was evaluated as a good catalyst for the production of low-sulfur, low-aromatic clean diesel oil.

  • PDF

Electricity Production Performance of Single- and Dual-cathode Microbial Fuel Cells Coupled to Carbon Source and Nitrate (Single-cathode와 Dual-cathode 미생물연료전지의 탄소원과 질산성질소의 전류발생 특성)

  • Jang, Jae-Kyung;Lee, Eun-Young;Ryou, Young-Sun;Lee, Sung-Hyoun;Hwang, Ji-Hwan;Lee, Hyung-Mo;Kim, Jong-Goo;Kang, Youn-Koo;Kim, Young-Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.382-386
    • /
    • 2011
  • Microbial fuel cells (MFC), devices that use bacteria as a catalyst to generate electricity, can utilize a variety of organic wastes as electron donors. The current generated may differ depending on the organic matter concentrations used, when other conditions, such as oxidant supply, proton transfer, internal resistance and so on, are not limiting factors. In these studies, a single-cathode type MFC (SCMFC) and dual-cathode type MFC (DCMFC) were used to ascertain the current's improvement through an increase in the contact area between the anode and the cathode compartments, because the cathode reaction is one of the most serious limiting factors in an MFC. Also an MFC was conducted to explore whether an improvement in electricity generation resulted from oxidizing the carbon sources and nitrates. About 250 mg $L^{-1}$ sodium acetate was fed to an anode compartment with a flow rate of 0.326 mL $min^{-1}$ by continuous mode. The current generated from the DCMFC was higher than the value produced from MFC with a single cathode. COD removal of dual-cathode MFC was also higher than that of single-cathode MFC. The nitrate didn't affect current generation at 2 mM, but when 4 and 8 mM nitrate was supplied, the current in the single-cathode and dual-cathode MFC was decreased by 98% from $5.97{\pm}0.13$ to $0.23{\pm}0.03$ mA and $8.40{\pm}0.23$ to $0.20{\pm}0.01$ mA, respectively. These results demonstrate that increasing of contact area of the anode and cathode can raise current generation by an improvement in the cathode reaction.

Lignin Removal from Barley Straw by Ethanosolv Pretreatment (Ethanosolv 전처리에 의한 보릿짚의 리그닌 제거)

  • Kim, Young-Ran;Yu, An-Na;Chung, Bong-Woo;Han, Min-Hee;Choi, Gi-Wook
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.527-532
    • /
    • 2009
  • Lignocellulose represents a key sustainable source of biomass for transformation into biofuels and bio-based products. Unfortunately, lignocellulosic biomass is highly recalcitrant to biotransformation, both microbial and enzymatic, which limits its use and prevents. As a result, effective pretreatment strategies are necessary. The vast majority of pretreatment strategies have focused on achieving a reduction of lignin content. In this work, an ethanosolv pretreatment has been evaluated for extracting lignin from barley straw. 75% ethanol was used as a pretreatment solvent to extract lignin from barley straw. The influence on delignification of three independent variables are temperature, time, catalyst (1 M $H_2SO_4$) dose. The best pretreatment condition observed was $180^{\circ}C$, 120 min, 0.2% $H_2SO_4$ and delignification was 38%. A combined roasting and ethanosolv, 2-step pretreatment, was developed in order to improve the delignification. Roasting didn't increase the delignification but reduced the pretreatment time. X-ray diffraction results indicated that these physical changes enhance the enzymatic digestibility in the ethanosolv treated barley straw. The cellulose in the pretreated barley straw becomes more crystalline without undergoing ethanosolv.

Electrochemical Characteristics of the MFCs using the Ceramic Membrane as a Separator (세라믹막을 이용한 미생물연료전지의 전기화학적 특성 연구)

  • Lim, Ji-Young;Park, Dae-Seok;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5728-5735
    • /
    • 2015
  • This study attempts to verify the applicability of ceramic membrane as a separator by comparing the power generation characteristics in single-chamber MFCs using ceramic membranes to those in the MFCs using nafion membrane. The generated power in MFCs by using acetate as a substrate was more stable than that by using formate, propionate and butyrate, respectively. It was shown that the generated power by using formate substrate in MFCs was unstable and a little higher than that by using acetate, and the power generated by using propionate and butyrate were lower than that by using acetate. In order to find out the Pt catalyst effect, it was compared the power generated in MFCs using Pt-coated carbon cloth as electrode to that power using normal carbon cloth. The power generated in MFCs using Pt-coated carbon cloth as electrode was 1.2 times higher than that using normal carbon cloth. The Pt-coated carbon cloth was about 5 times more expensive than normal carbon cloth. It is suggested that both power generation efficiency and cost together should be considered in selecting electrodes of MFCs. It was found that the ceramic membrane was superior to nafion membrane by comparing to the power generation characteristics obtained. It was shown that average voltage values were $523.67mV{\pm}49.41mV$ by using synthetic wastewater, in MFCs of ceramic membrane as a separator. While average voltage values were $424.09mV{\pm}79.95mV$ by using synthetic wastewater, in MFCs of nafion membrane as a separator. The organic removal efficiency, 41.7% by using ceramic membrane was a little bit higher than 40.8% by using nafion membrane. This research implies ceramic membrane can be a valid alternative to nafion membrane as a separator when considering the power generation and the efficiency of organics removal.

Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs (QDs를 이용한 키토산-골드와 키토산-실버 나노약물전달체 제조)

  • Lee, Yong-Choon;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • A drug transport carrier could be used for safe send of drugs to the affected region in a human body. The chitosan is adequate for the drug delivery carrier because of adaptable to living body. The gold, a metallic nanoparticles, tends to form a nano complex at rapidly when it combined with chitosan because of its negative charge. having energy from the other, outer gold nano-complex make heat due to its property to release the contained drugs to the target area. Silver could be also formed an useful biocompatible nano-composites with chitosan which should be used as an useful drug transfer carrier because its special ability to protect microbial contamination. Being one of the oxidized nano metals, $Fe_3O_4$ is nontoxic and has been used for its magnetic characteristics. In this study, the control of catalyst, reducing agent, and solvent amount. The chitosan-$Fe_3O_4$-gold & silver nanoshell have been changed to form about 100 nm size by ionic bond between the amine group, an end group of chitosan, and the metal. It was observed the change in order to seek for its optimum reaction condition as a drug transfer carrier.