• Title/Summary/Keyword: microbial biomass

Search Result 312, Processing Time 0.028 seconds

Impacts of Soil Organic Matter on Microbial Community of Paddy Soils in Gyeongnam Province

  • Son, Daniel;Sonn, Yeon-Kyu;Weon, Hang-Yeon;Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.783-788
    • /
    • 2016
  • Agricultural management of paddy soil depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 paddy soils in Gyeongnam Province by fatty acid methyl ester (FAME). The average of microbial communities in paddy soils were 32.2% of total bacteria, 16.7% of Gram-negative bacteria, 12.9% of Gram-positive bacteria, 2.0% of actinomycetes, 14.9% of fungi, and 1.3% of arbuscular mycorrhizal fungi. The communities of total bacteria (34.9%) and Gram-negative bacteria (19.4%) in soils with $30{\sim}35g\;kg^{-1}$ of organic matter were significantly larger than those in soils with other organic matter levels. However, soils with $20{\sim}30g\;kg^{-1}$ of organic matter had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ as compared with soils with $30{\sim}35g\;kg^{-1}$ of organic matter, indicating microbial stress decreased (p < 0.05). In principal component analyses of soil microbial communities, Gram-negative bacteria should be considered as a potential responsible factor for the obvious microbial community differentiation that was observed between the two different organic matter levels in paddy fields. Thus, soils containing $20{\sim}30g\;kg^{-1}$ of organic matter were responsible for strong effect on microbial biomass and stress in paddy fields.

Bioprocess Control for Continuous Culture of Dunaliella Salina in Flat Panel Photobioreactor (평판형 광생물반응기의 Dunaliella Salina 연속배양을 위한 생물공정 제어)

  • Kim, Gwang Ho;Ahn, Dong-Gyu;Park, Jong Rak;Choi, Gang Hun;Kim, Jong Tye;Kim, Ki Won;Jeong, Sang Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.137-142
    • /
    • 2013
  • The indiscriminate use of the fossil fuel has caused serious environmental pollutions such as the shortage of energy and global warming. Microalgae have being emphasized as $3^{rd}$ generation biomass which makes the carbon dioxide reduce effectively as well as produces the biofuel. Large scale production of microbial biomass by continuous culture is a quite challenging issue, because off-line optimization strategies of a microbial process utilizing a model-based scheme give rise to many difficult problems. In this paper, the static and simple control method which was able to be applied in time-variant growth environment and large scale of algae culture was studied. The significant disturbances in on-line measurement of cell density were reduced by Savitzky-Golay FIR smoothing filter. Dunaliella salina was cultivated continuously in a flat panel photobioreactor by the on-off control of the turbidostat process.

Nutritional Properties by Composting Process of Algae Biomass as Soil Conditioner (조류 바이오매스를 이용한 토양개량제의 퇴비화 과정에 따른 영양성분 특성)

  • Ahn, Chang-Hyuk;Lee, Saeromi;Park, Jae-Roh
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.604-615
    • /
    • 2019
  • In this study, we produce a new type of the algae soil conditioner(ASC) using discarded algae biomass through a composting process and evaluate its nutritional characteristics. As the main ingredient, the ASCs used algae biomass collected through the coagulation-floating method and made by adding a variety of additional supporting materials (sawdust, pearlite, oilcake etc.). ASCs were divided into 0% in blank, 11.7% in ASC1, 21.6% in ASC2, 37.6% in ASC3, 59.5% in ASC4, and composted during 127 days. ASCs showed a sharp increase in temperature by aerobic microbial reaction, and 6~7 high and low temperature peaks were observed. As a result of physicochemical analysis, mineralization proceeded according to decomposing the organic matter and there was a marked increase not only in macronutrients (TN, P2O5, K2O), but also in secondary macronutrients (CaO, MgO). The microbial community change was found in stage 1 (bacteria, filamentous fungi) → stage 2 (actinomycetes, bacteria) → stage 3 (Bacillus sp.), depending on the maturation process. It was estimated that microbial transition was closely related to temperature change and nutritional behavior. The quality of soil conditioner can be determined according to the maturity of compost process, and it was determined that effective microbial activity could be induced by controlling algae biomass below 59.5% in this study. In conclusion, we found out the possibility of manufacturing and utilizing soil conditioner recycled algae biomass and if further technological development is made on the basis it can be used as an effective soil conditioner.

Effects of Bottom Ash Amendment on Soil Respiration and Microbial Biomass under Anaerobic Conditions (혐기조건에서 석탄바닥재가 토양호흡량 및 미생물 생체량에 미치는 영향)

  • Park, Jong-Chan;Chung, Doug-Young;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.260-265
    • /
    • 2012
  • Soil respiration under flooded conditions is considered to be very small compared with aerobic soil respiration of soil organic matter. However, anaerobic decomposition of soil plays a key role in carbon cycling in flooded ecosystems. On the other hand, coal-ash wastes, such as fly ash and bottom ash, are known to function as a soil amendment for mitigating $CO_2$ emission and enhancing carbon sequestration in up land soils. In this study, we investigated bottom ash as a soil amendment for mitigating $CO_2$ emission, and thus enhancing carbon sequestration under anaerobic conditions. We observed that amendment of bottom ash without external organic source led to significant reduction in $CO_2$ emission rate and in total cumulative $CO_2$ emission flux over the incubation period, which was proportional to the amount of bottom ash applied. We also found that soil microbial biomass increased in response to application of bottom ash. These results suggest that bottom ash can be utilized to store $CO_2$ as a stable soil organic carbon in flooded ecosystems, as in aerobic situations.

Change of Microbial Community and Fermentative Production of Hydrogen from Tofu Wastewater (두부 폐수를 이용한 수소생산 및 미생물의 군집 변화)

  • Jun, Yoon-Sun;Joe, Yoon-A;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • In this study, characteristics of biological hydrogen production and microbial distribution were investigated with the wastewater of Tofu manufacturing process. Comparison of hydrogen production was conducted with acid or base pre-treatment of the wastewater. Maximum hydrogen production was acquired with combination of heat and acid treatment. Hydrogen production ($P_h$) and maximum hydrogen production rate ($R_h$) was calculated 661.01 mL and 12.21 mL/g dry wt biomass/hr from the modified Gompartz equation. Most of microbial community was analyzed as Streptococcus sp. from PCR-DGGE experiment of 16S rDNA. It was concluded that most significant microorganism for hydrogen production was Streptococcus gallolyticus sub sp. in this experiment.

Variations of Hydrogen Production and Microbial Community with Different Nitrogen Concentration During Food Waste Fermentation (음식물쓰레기의 혐기성 소화 시 질소농도에 따른 수소생산 및 미생물 군집변화)

  • Lee, Pul-Eip;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.672-678
    • /
    • 2014
  • In this study, variations of fermentative hydrogen production and microbial community were investigated with different nitrogen concentration of food waste. Optimum hydrogen production rate was acquired at 200 mg/L nitrogen concentration of the food waste. Which was eqivalent to 83.43 mL/g dry biomass/hr. However, bio-hydrogen production was inhibitedly reduced at over 600 mg/L of nitrogen concentration whereas proportional relation between hydrogen production and B/A ratio were not observed. Most dominant specie of the microbial community analyzed was Clostridium sp. throughout PCR-DGGE analysis of 16S rDNA. It revealed that most contributing microorganism producing hydrogen were Enterococcus faecium partial, Klebsiella pneumoniae strain ND6, Enterobacter sp. NCCP-231, and Clostridium algidicarnis strain E107 in this experiment.

Impacts of Cropping Systems on the Distribution of Soil Microorganisms in Mid-mountainous Paddy

  • Kang, Ui-Gum;Shin, Woon-Chul;Choi, Jong-Seo;Lee, Yong-Bok;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.480-488
    • /
    • 2016
  • Soil microbes are widely well known to play an important role for sustainable agriculture in terms of crop healthy cultivation and environmental conservation. In this context, the distributional characteristics of soil microbes according to cropping systems were investigated under rice (R)-rice (R), rice (R)-barley (B)-rice (R), and soybean (S)-barley (B)-soybean (S) cropping condition to get basic informations for sustainable agriculture, where barley was grown for winter, in mid-mountainous loam paddy located at the altitude of 285 m above sea level in Sangju area from 2014 to 2015. Estimating from microbial communities by fatty acid methyl ester (FAME) method, a total biomass of bacteria, actinomycetes, and fungi in R-B-R plot was 37% and 40% higher than that in S-B-S and R-R plots, respectively (p < 0.05). In especial, bacteria and fungi were more in R-B-R plot than those in any other ones. B. japonicum, AMF, and mesophilic Bacillus sp. were also greater in S-B-S plot than those. In the community distribution, however, bacteria and actinomycetes showed comparatively high values in S-B-S plot relative to either R-R or R-B-R plot including rice, in which fungi outstanding. In the correlation between microbial biomass and soil properties changed by the cropping, bacteria was positively correlated with C:N ratio; actinomycetes with exchangeable Ca; fungi with available $P_2O_5$ (p < 0.05). While these microbes showed negative response to water stable aggregates of soil.

Effect of Bacillus subtilis S37-2 on Microorganisms in Soil and Growth of Lettuce (Lactuca sativa)

  • Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Seuk, Su-Won;Song, Jae-Kyeong;Kwon, Jang-Sik;Kim, Min-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.621-626
    • /
    • 2016
  • The present study evaluated the variations in soil microbial population of controlled horticultural land used for lettuce (Lactuca sativa) cultivation by their fatty acid methyl ester and chemical properties. We utilized four treatment groups, no treatment (NT), culture medium (CM), Bacillus subtilis S37-2 (KACC 91281P) ${\times}10^6CFU\;mL^{-1}$ (BS1), and Bacillus subtilis $S37-2{\times}10^7CFU\;mL^{-1}$ (BS2) and analyzed these variations throughout the before treatment and harvesting stage. The chemical properties such as pH, organic matter, available phosphate, and electrical conductivity in soils before treatment and harvesting stage showed no significant difference among the treatments. Total numbers of bacteria and microbial biomass C in soil treated with BS1 were larger than those of NT, CM, and BS2, whereas total number of fungi at the harvesting stage was significantly lower in the BS1 soil than in the NT and CM soils (P < 0.05). On basis of leaf length, leaf width, leaf number and leaf weight, the growth characteristics lettuce on the soil treated with BS1 and BS2 was faster than those of NT and CM soils. Yield of lettuce with treated BS1 and BS2 were 35% and 29% more than that of NT, respectively.

Influence of Some Pollutants and Fertilizers on Degradation of Oxadixyl in Soil (몇 가지 오염물질과 비료의 처리가 살균제 Oxadixyl의 토양중 분해에 미치는 영향)

  • Moon, Young-Hee;Kim, Yong-Hwi;Kim, Young-Seok
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.341-346
    • /
    • 1997
  • The degradation of fungicide oxadixyl in soil amended with manure, chemical fertilizers, heavy metals and detergent was studied. The degradation of oxadixyl in the soil was slow, but became to be fast after the lag phase of about 14 days. The half-life was 10.5 days. The degradation rate was accelerated largely by the amendment of manure. Potassium also promoted the degradation rate but nitrogen and phosphate did not. The heavy metals inhibited the degradation rate, in order of Ni, Cd, Cr, Cu, and Zn. The degradation rate was declined greatly with the addition of synthetic detergent. The microbial biomass and the respiration rate in the soil were increased by the amendment of manure and chemical fertilizers, but decreased by the addition of heavy metals and cleaner. The degradation rate of oxadixyl was positively correlated with the microbial biomass and the respiration rate.

  • PDF

Phenolic compounds removal by grasses and soil bacteria after land application of treated palm oil mill effluent: A pot study

  • Phonepaseuth, Phongphayboun;Rakkiatsakul, Viroj;Kachenchart, Boonlue;Suttinun, Oramas;Luepromchai, Ekawan
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.127-136
    • /
    • 2019
  • Land application of treated palm oil mill effluent (TPOME) could be used as an alternative tertiary wastewater treatment process. However, phenolic compounds in TPOME might be leached to the environment. This study investigated the ability of grasses on reducing phenolic compounds in the leachate after TPOME application. Several pasture grasses in soil pots were compared after irrigating with TPOME from stabilization ponds, which contained 360-630 mg/L phenolic compounds. The number of soil bacteria in planted pots increased over time with the average of $10^8CFU/g$ for mature grasses, while only $10^4-10^6CFU/g$ were found in the unplanted control pots. The leachates from TPOME irrigated grass pots contained lower amounts of phenolic compounds and had lower phytotoxicity than that of control pots. The phenol removal efficiency of grass pots was ranged 67-93% and depended on grass cultivars, initial concentration of phenolic compounds and frequency of irrigations. When compared to water irrigation, TPOME led to an increased phenolic compounds accumulation in grass tissues and decreased biomass of Brachiaria hybrid and Brachiaria humidicola but not Panicum maximum. Consequently, the application of TPOME could be conducted on grassland and the grass species should be selected based on the utilization of grass biomass afterward.