DOI QR코드

DOI QR Code

Effects of Bottom Ash Amendment on Soil Respiration and Microbial Biomass under Anaerobic Conditions

혐기조건에서 석탄바닥재가 토양호흡량 및 미생물 생체량에 미치는 영향

  • Park, Jong-Chan (Department of Environmental & Biological Chemistry, Chungbuk National University) ;
  • Chung, Doug-Young (Department of Bioenviromental Chemistry, Chungnam National University) ;
  • Han, Gwang-Hyun (Department of Environmental & Biological Chemistry, Chungbuk National University)
  • 박종찬 (충북대학교 환경생명화학과) ;
  • 정덕영 (충남대학교 생물환경화학과) ;
  • 한광현 (충북대학교 환경생명화학과)
  • Received : 2012.02.22
  • Accepted : 2012.03.15
  • Published : 2012.04.30

Abstract

Soil respiration under flooded conditions is considered to be very small compared with aerobic soil respiration of soil organic matter. However, anaerobic decomposition of soil plays a key role in carbon cycling in flooded ecosystems. On the other hand, coal-ash wastes, such as fly ash and bottom ash, are known to function as a soil amendment for mitigating $CO_2$ emission and enhancing carbon sequestration in up land soils. In this study, we investigated bottom ash as a soil amendment for mitigating $CO_2$ emission, and thus enhancing carbon sequestration under anaerobic conditions. We observed that amendment of bottom ash without external organic source led to significant reduction in $CO_2$ emission rate and in total cumulative $CO_2$ emission flux over the incubation period, which was proportional to the amount of bottom ash applied. We also found that soil microbial biomass increased in response to application of bottom ash. These results suggest that bottom ash can be utilized to store $CO_2$ as a stable soil organic carbon in flooded ecosystems, as in aerobic situations.

담수 토양에서의 토양호흡량은 호기 상태에 비해 매우 낮은 수준이나, 혐기 상태에서의 유기물의 분해는 담수 생태계의 탄소순환에 매우 중요한 역할을 한다. 한편, 비산회(fly ash), 석탄바닥재 (bottom ash)와 같은 석탄 연료 부산물들은 이산화탄소 발생을 저감하고 토양 탄소를 격리하는 효과가 있음이 보고된 바 있다. 이에 본 연구는 혐기조건 토양에서 석탄바닥재 단일 처리 및 석탄바닥재와 유기물 혼합 처리가 토양 미생물 호흡량 및 미생물 생체량 변화에 미치는 영향을 조사하였다. 이산화탄소 발생속도는 석탄바닥재 처리에 의해 유의하게 감소하였고, 처리수준에 따라서도 감소하는 것을 보였다. 유기물과 석탄바닥재를 혼합 처리하였을 때에도 발생속도가 감소되는 것을 확인하였다. 석탄바닥재 처리에 따라 토양미생물 생체량은 유의하게 증가하였고, 토양 중 암모니아태 질소, 질산태 질소, 유효인의 함량은 감소하는 경향이 있었다.

Keywords

References

  1. Amonette, J.E., J.B. Kim, C.K. Russell, A.V. Palumbo, and W.L. Daniels. 2003. Enhancement of soil carbon sequestration by amendment with fly ash. International Ash Utilization Symposium, University of Kentucky. USA.
  2. Black, B.L. and R.H. Zimmerman. 2002. Mixtures of coal ash and compost as substrates for highbush blueberry. J. Am. Soc. Hortic. Sci. 127(5):869-877.
  3. Campbell, C.S., J.L. Heilman, K.J. Mclnnes, L.T. Wilson, J.C. Medley, G. Wu, and D.R. Cobos. 2001. Diel and seasonal variation in $CO_{2}$ flux of irrigated rice. Agric. For. Meteorol., 108(1):15-27. https://doi.org/10.1016/S0168-1923(01)00225-8
  4. Conrad, R., M. Klose, and P. Claus. 2002. Pathway of CH4 formation in anoxic rice field soil and rice roots determined by $^{13}C$-stable isotope fractionation. Chemosphere., 47(8): 797-806. https://doi.org/10.1016/S0045-6535(02)00120-0
  5. Han, G.H., H. Yoshikoshi, H. Nagai, T. Yamada, K. Ono, M. Mano,and A. Miyata. 2007. Isoptopic disequilibrium between carbon assimilated and respired in a rice paddy as influenced by methanogenesis from $CO_{2}$. J.Geophys. Res., 112, G02016, doi:10.1029/2006JG000219.
  6. Hinsch, F.A., J.L. Heilman, K.J. Mclnnes, D.A. Cobos, D.A. Zuberer, and D.L. Roelke. 2004. Carbon dioxide exchange in a high marsh on the Texas Gulf Coast: Effects of availability. Agric. For. Meteorol. 125(12):159-172. https://doi.org/10.1016/j.agrformet.2004.02.007
  7. Horwath, W.R. and E.A. Paul. 1996. Microbial biomass. P. 753-773. In A.L. page et al.(ed.) Methods of soil analysis, part 2. Microbiological and Biochemical Properties (1st ed.). Soil Science Society of America, Madison, WI, USA.
  8. Intergovernmental panel on climate change (IPCC). 2001. Climate chnge 2001: The Scientific basis, Houghton et al. (eds.), Cambridge Univ. Press, New York, pp. 385 -391.
  9. Jala, S. and D. Goyal. 2006. Fly ash as a soil ameliorant for improving crop production. Bioresource Technology. 97: 1136-1147. https://doi.org/10.1016/j.biortech.2004.09.004
  10. Kimura, M., J. Murase, and Y. Lu. 2004. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products ($CO_{2}$ and $CH_{4}$). Soil. Biol. Biochem., 36(9):1399-1416. https://doi.org/10.1016/j.soilbio.2004.03.006
  11. Kishor, A.K., Ghosh, and D.L. Kumar. 2010. Use of flyash in agriculture: A way to improve soil fertility and its productivity. Ajar 4(1):1-14.
  12. Lee, J.Y. 2011. Assessment of bottom ash amendment on soil and turfgrass qualities in golf course. Doctor thesis. Kangwon national university, Chuncheon, Korea.
  13. Lee, J.Y., H.Y. Choi, and J.E. Yang. 2010. Physicochemical effects of bottom ash on the turfgrass growth media of sandy topsoil in golf course. Kor. Turfgrass Sci. 24(2):199-204.
  14. Miyata, A., R. Leuning, O.T. Denmead, J. Kim, and Y. Harazono. 2000. Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agric. For. Meteorol., 102(4):287303. https://doi.org/10.1016/S0168-1923(00)00092-7
  15. Mulvaney, R.L. 1996. Nitrogen inorganic form. P. 1152- 1155. In A.L. page et al.(ed.) Methods of soil analysis, part 3. Chemical methods (1st ed.). Soil Science Society of America, Madison, WI, USA.
  16. Ostrem, K. and N.J. Themelis. 2004. Greening waste : Anaerobic digestion for treating the organic fraction of municipal solid wastes. Department of Earth and Environmental Engineering Fu Foundation of School of Engineering and Applied Science, Columbia University, Columbia, USA.
  17. Palumbo, A.V., J.E. Amonette, J.R. Tarver, L.A. Fagan, S. Meghan, M.S. McNeilly, and W.L. Daniels. 2007. Fly ash chracteristics and carbon sequestration potential. World of coal ash (WOCA). Covington. Kentucky. USA.
  18. Palumbo, A.V., W.L. Daniels, J.A. Burger, J.F. McCarthy, S. Wullschleger, J.E. Amonette, and L.S. Fusher. 2004. Prospects for enhancing carbon sequestration and reclamation of degraded lands with fossil-fuel combustion byproducts. Adv. Envir. Res. 8:425-438. https://doi.org/10.1016/S1093-0191(02)00124-7
  19. Phelps, T.J., Y. Roh, and R.J. Lauf. 2003. Biogeochemical processes utilizing fly ash for carbon sequestration. Hilton alexandria mark center. Alexandria. Virginia. USA.
  20. Ralph, M. and G.J. Dong. 2010. Environmental microbiology second., A jhon wiley and sons, Inc., Publication.
  21. RDA. 2000. Methods of analysis of soil and plant, National Institute of Agricultural Science and Technology, Rural Development Administration, Korea.
  22. Rochette, P.L. and G.L. Hutchinson. 2005. Measurement of soil respiration in situ: chamber techniques. pp. 247 -286. In A.L. page et al.(ed.) Micrometeorology in agricultural systems, part 12. Soil Science Society of Analysis, Madison, WI, USA.
  23. Soil Science Society of America. 1996. Methods of soil analysis, part 3 chemical methods. Madison, Wisconsin, USA.
  24. Wearing, C., C. Birch, and J. Nairn. 2004. An assessment of Tarong bottom ash for use on agricultural soils. Dev. Chem. Eng. Mineral Process., 12:531-543.
  25. Yang, J.E., E.D. Skogley, B.E. Schaff, and J.J. Kim. 1998. A simple spectrophotometric determination of nitrate in water, resin, and soil extracts. Soil Sci. Soc. Am. J. 62:368-375
  26. Yun, M.G. 2010. Immobilization of soil bacteria with cal bottom ash for using as microbial carrier. Master thesis. Gyengsang national university, Jinju, Korea.