• 제목/요약/키워드: microbial activity and structure

검색결과 102건 처리시간 0.022초

Differentiation in Nitrogen-Converting Activity and Microbial Community Structure between Granular Size Fractions in a Continuous Autotrophic Nitrogen Removal Reactor

  • Qian, Feiyue;Chen, Xi;Wang, Jianfang;Shen, Yaoliang;Gao, Junjun;Mei, Juan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권10호
    • /
    • pp.1798-1807
    • /
    • 2017
  • The differentiations in nitrogen-converting activity and microbial community structure between granular size fractions in a continuous completely autotrophic nitrogen removal over nitrite (CANON) reactor, having a superior specific nitrogen removal rate of $0.24g/(g\;VSS{\cdot}h)$, were investigated by batch tests and high-throughput pyrosequencing analysis, respectively. Results revealed that a high dissolved oxygen concentration (>1.8 mg/l) could result in efficient nitrite accumulation with small granules (0.2-0.6 mm in diameter), because aerobic ammonium-oxidizing bacteria (genus Nitrosomonas) predominated therein. Meanwhile, intermediate size granules (1.4-2.0 mm in diameter) showed the highest nitrogen removal activity of $40.4mg/(g\;VSS{\cdot}h)$ under sufficient oxygen supply, corresponding to the relative abundance ratio of aerobic to anaerobic ammonium-oxidizing bacteria (genus Candidatus Kuenenia) of 5.7. Additionally, a dual substrate competition for oxygen and nitrite would be considered as the main mechanism for repression of nitrite-oxidizing bacteria, and the few Nitrospira spp. did not remarkably affect the overall performance of the reactor. Because all the granular size fractions could accomplish the CANON process independently under oxygen limiting conditions, maintaining a diversity of granular size would facilitate the stability of the suspended growth CANON system.

Effect of Ion Pair on Thermostability of F1 Protease: Integration of Computational and Experimental Approaches

  • Rahman, Raja Noor Zaliha Raja Abd;Noor, Noor Dina Muhd;Ibrahim, Noor Azlina;Salleh, Abu Bakar;Basri, Mahiran
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권1호
    • /
    • pp.34-45
    • /
    • 2012
  • A thermophilic Bacillus stearothermophilus F1 produces an extremely thermostable serine protease. The F1 protease sequence was used to predict its three-dimensional (3D) structure to provide better insights into the relationship between the protein structure and biological function and to identify opportunities for protein engineering. The final model was evaluated to ensure its accuracy using three independent methods: Procheck, Verify3D, and Errat. The predicted 3D structure of F1 protease was compared with the crystal structure of serine proteases from mesophilic bacteria and archaea, and led to the identification of features that were related to protein stabilization. Higher thermostability correlated with an increased number of residues that were involved in ion pairs or networks of ion pairs. Therefore, the mutants W200R and D58S were designed using site-directed mutagenesis to investigate F1 protease stability. The effects of addition and disruption of ion pair networks on the activity and various stabilities of mutant F1 proteases were compared with those of the wild-type F1 protease.

주요 오염물질로 오염된 지하수에서 미생물의 무배양식 군집분석방법과 미생물상에 대한 조사방법 연구 (Culture-Independent Methods of Microbial Community Structure Analysis and Microbial Diversity in Contaminated Groundwater with Major Pollutants)

  • 김재수
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제11권3호
    • /
    • pp.66-77
    • /
    • 2006
  • 최근에 적용된 지하수 미생물의 군집구조를 밝히는 분자생물학적 및 생화학적 방법들에 대해서 알아보았고 그 결과로서 지하수의 주요 오염물질에 따른 활성화된 미생물군집들이 무엇인지를 밝힌 연구논문들을 종합하여 정리하였다. PCR에 의한 유전자 증폭기술의 발달로 배양 없이 미생물 종류와 개체군을 파악할 수 있게 되었고 각종 finger-printing 방법 (DGGE, SSCP, RISA, microarray) 과 지방산분석법 (PLFA/FAME)을 이용하여 활성화 된 미생물군집구조를 분석하였으며 FISH 등의 방법으로 특정균의 활성도를 알아본 사례들을 조사하였다. 대표적인 지하수오염물질인 유류성분 (n-alkanes, BTEX, MTBE, ethanol)과 염소계 용매 (TCE, PCE, PCB, CE, carbon tetrachloride, chloro-benzene) 등으로 오염되었을 때 우점하는 지하수 미생물상에 대해 보고된 내용을 포함하였다.

Biotransformation of Rosamicin Antibiotic into 10,11-Dihydrorosamicin with Enhanced In Vitro Antibacterial Activity Against MRSA

  • Nguyen, Lan Huong;Nguyen, Huu Hoang;Shrestha, Anil;Sohng, Jae Kyung;Yoon, Yeo Joon;Park, Je Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권1호
    • /
    • pp.44-47
    • /
    • 2014
  • A biotransformation approach using microbes as biocatalysts can be an efficient tool for the targeted modification of existing antibiotic chemical scaffolds to create previously uncharacterized therapeutic agents. By employing a recombinant Streptomyces venezuelae strain as a microbial catalyst, a reduced macrolide, 10,11-dihydrorosamicin, was created from rosamicin macrolide. Its chemical structure was spectroscopically elucidated, and the new rosamicin analog showed 2-4-fold higher antibacterial activity against two strains of methicillin-resistant Staphylococcus aureus compared with its parent rosamicin. This kind of biocatalytic approach is able to expand existing antibiotic entities and can also provide more diverse therapeutic resources.

Effects of Metal and Metalloid Contamination on Microbial Diversity and Activity in Agricultural Soils

  • Tipayno, Sherlyn C.;Chauhan, Puneet S.;Woo, Sung-Man;Hong, Bo-Hee;Park, Kee-Woong;Chung, Jong-Bae;Sa, Tong-Min
    • 한국토양비료학회지
    • /
    • 제44권1호
    • /
    • pp.146-159
    • /
    • 2011
  • The continuous increase in the production of metals and their subsequent release into the environment has lead to increased concentration of these elements in agricultural soils. Because microbes are involved in almost every chemical transformations taking place in the soil, considerable attention has been given to assessing their responses to metal contaminants. Short-term and long-term exposures to toxic metals have been shown to reduce microbial diversity, biomass and activities in the soil. Several studies show that microbial parameters like basal respiration, metabolic quotient, and enzymatic activities, including those of oxidoreductases and those involved in the cycle of C, N, P and other elements, exhibit sensitivity to soil metal concentrations. These have been therefore, regarded as good indices for assessing the impact of metal contaminants to the soil. Metal contamination has also been extensively shown to decrease species diversity and cause shifts in microbial community structure. Biochemical and molecular techniques that are currently being employed to detect these changes are continuously challenged by several limiting factors, although showing some degree of sensitivity and efficiency. Variations and inconsistencies in the responses of bioindicators to metal stress in the soil can also be explained by differences in bioavailability of the metal to the microorganisms. This, in turn, is influenced by soil characteristics such as CEC, pH, soil particles and other factors. Therefore, aside from selecting the appropriate techniques to better understand microbial responses to metals, it is also important to understand the prevalent environmental conditions that interplay to bring about observed changes in any given soil parameter.

Role of Peptides in Rumen Microbial Metabolism - Review -

  • Wallace, R.J.;Atasoglu, C.;Newbold, C.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권1호
    • /
    • pp.139-147
    • /
    • 1999
  • Peptides are formed in the rumen as the result of microbial proteinase activity. The predominant type of activity is cysteine ptoteinase, but others, such as serine proteinases, are also present. Many species of protozoa, bacteria and fungi are involved in ptoteolysis; large animal-to-animal variability is found when proteinase activities in different animals are compared. The peptides formed from proteolysis are broken down to amino acids by peptidases. Different peptides are broken down at different rates, depending on their chemical composition and particularly their N-terminal structure. Indeed, chemical addition to the N-terminus of small peptides, such as by acetylation, causes the peptides to become stable to breakdown by the rumen microbial population; the microorganisms do not appear to adapt to hydrolyse acetylated peptides even after several weeks exposure to dietary acetylated peptides, and the amino acids present in acetylated peptides are absorbed from the small intestine. The amino acids present in some acetylated peptides remain available in nutritional trials with rats, but the nutritive value of the whole amino acid mixture is decreased by acetylation. The genus Prevotella is responsible for most of the catabolic peptidase activity in the rumen, via its dipeptidyl peptidase activities, which release dipeptides rather than free amino acids from the N-terminus of oligopeptides. Studies with dipeptidyl peptidase mutants of Prevotella suggest that it may be possible to slow the rate of peptide hydrolysis by the mixed rumen microbial population by inhibiting dipeptidyl peptidase activity of Prevotella or the rate of peptide uptake by this genus. Peptides and amino acids also stimulate the growth of rumen microorganisms, and are necessary for optimal growth rates of many species growing on tapidly fermented substrates; in rich medium, most bacteria use pre-formed amino acids for more than 90% of their amino acid requirements. Cellulolytic species are exceptional in this respect, but they still incorporate about half of their cell N from pre-formed amino acids in rich medium. However, the extent to which bacteria use ammonia vs. peptides and amino acids for protein synthesis also depends on the concentrations of each, such that preformed amino acids and peptides are probably used to a much lesser extent in vivo than many in vitro experiments might suggest.

Monitoring of Microbial Diversity and Activity During Bioremediation of Crude Oil-Contaminated Soil with Different Treatments

  • Baek, Kyung-Hwa;Yoon, Byung-Dae;Kim, Byung-Hyuk;Cho, Dae-Hyun;Lee, In-Sook;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.67-73
    • /
    • 2007
  • The present study compared the microbial diversity and activity during the application of various bioremediation processes to crude oil-contaminated soil. Five different treatments, including natural attenuation (NA), biostimulation (BS), biosurfactant addition (BE), bioaugmentation (BA), and a combined treatment (CT) of biostimulation, biosurfactant addition, and bioaugmentation, were used to analyze the degradation rate and microbial communities. After 120 days, the level of remaining hydrocarbons after all the treatments was similar, however, the highest rate (k) of total petroleum hydrocarbon (TPH) degradation was observed with the CT treatment (P<0.05). The total bacterial counts increased during the first 2 weeks with all the treatments, and then remained stable. The bacterial communities and alkane monooxygenase gene fragment, alkB, were compared by denaturing gradient gel electrophoresis (DGGE). The DGGE analyses of the BA and CT treatments, which included Nocardia sp. H17-1, revealed a simple dominant population structure, compared with the other treatments. The Shannon-Weaver diversity index (H') and Simpson dominance index (D), calculated from the DGGE profiles using 16S rDNA, showed considerable qualitative differences in the community structure before and after the bioremediation treatment as well as between treatment conditions.

Responses of Low-Quality Soil Microbial Community Structure and Activities to Application of a Mixed Material of Humic Acid, Biochar, and Super Absorbent Polymer

  • Li, Fangze;Men, Shuhui;Zhang, Shiwei;Huang, Juan;Puyang, Xuehua;Wu, Zhenqing;Huang, Zhanbin
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1310-1320
    • /
    • 2020
  • Low-quality soil for land reuse is a crucial problem in vegetation quality and especially to waste disposal sites in mining areas. It is necessary to find suitable materials to improve the soil quality and especially to increase soil microbial diversity and activity. In this study, pot experiments were conducted to investigate the effect of a mixed material of humic acid, super absorbent polymer and biochar on low-quality soil indexes and the microbial community response. The indexes included soil physicochemical properties and the corresponding plant growth. The results showed that the mixed material could improve chemical properties and physical structure of soil by increasing the bulk density, porosity, macro aggregate, and promote the mineralization of nutrient elements in soil. The best performance was achieved by adding 3 g·kg-1 super absorbent polymer, 3 g·kg-1 humic acid, and 10 g·kg-1 biochar to soil with plant total nitrogen, dry weight and height increased by 85.18%, 266.41% and 74.06%, respectively. Physicochemical properties caused changes in soil microbial diversity. Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria were significantly positively correlated with most of the physical, chemical and plant indicators. Actinobacteria and Armatimonadetes were significantly negatively correlated with most measurement factors. Therefore, this study can contribute to improving the understanding of low-quality soil and how it affects soil microbial functions and sustainability.

Inhibition of Transglutaminase and Microbial Transglutaminase Activity by Garlic

  • Lee, Nam-Hyouck;Takeuchi, Atsuyoshi;Konno, Kunihiko
    • Food Science and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.223-227
    • /
    • 2007
  • Ground garlic inhibited the cross-linking reaction of myosin and incorporation of monodansylcadaverine (MDC) in salted Alaska pollack surimi catalyzed by transglutaminase (TGase). The component responsible for the inhibition was a thermostable, low molecular weight compound. The component also inhibited microbial transglutaminase (MTGase). The inhibition by garlic was reversibly recovered upon addition of 2-mercaptoethanol. The inhibitory component was therefore hypothesized to contain sulfhydryl groups within its structure. Alliin itself did not inhibit the cross-linking reaction. However, the addition of alliin together with garlic increased the inhibition. This result suggested that compounds derived from alliin was responsible for the inhibition of TGase activity.