• 제목/요약/키워드: microarray data

검색결과 476건 처리시간 0.027초

마이크로어레이 데이터 공유 시스템 (Microarray Data Sharing System)

  • 윤지희;홍동완;이종근
    • 한국콘텐츠학회논문지
    • /
    • 제9권8호
    • /
    • pp.18-31
    • /
    • 2009
  • 최근, 마이크로어레이 실험 데이터의 품질과 재생산성에 대한 신뢰도가 증가하고 있어 마이크로어레이 데이터의 공유 및 활용에 대한 요구가 급속히 증가하고 있다. 그러나 공개되어 있는 국내, 외 마이크로어레이 데이터는 실험 방식, 플랫폼 등에 따라 서로 다른 데이터 항목과 포맷을 가지므로 데이터의 실제적 접근 및 활용이 어려운 상황이다. 본 논문에서는 실험 플랫폼, 데이터 포맷, 정규화 기법, 분석 방식 등이 서로 다른 기존의 마이크로어레이 데이터를 효율적으로 검색, 공유, 통합할 수 있는 마이크로어레이 데이터 공유 시스템을 제안한다. 제안된 시스템은 웹 서비스 기반 기술을 이용하여 분산된 마이크로어레이 데이터를 통합하며, 각 사이트의 사용자는 UDDI를 통하여 검색한 데이터를 표준 MGED 기반의 공통 데이터 구조로 자동 변환하여 다운 받을 수 있다. 정의된 공통 데이터 구조는 IDF,ADF,SDRF,EDF로 구성되어 다양한 구조의 마이크로어레이를 통합할 수 있는 템플릿 역할을 수행하며, MAGE-ML, MAGE-TAB, XML Schema 문서로 저장할 수 있다. 또한 제안된 시스템의 자동 데이터 제출기, 파일 관리자 등은 마이크로어레이 데이터 공유를 위한 다양한 부가 기능을 제공한다.

Network-based Microarray Data Analysis Tool

  • Park, Hee-Chang;Ryu, Ki-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권1호
    • /
    • pp.53-62
    • /
    • 2006
  • DNA microarray data analysis is a new technology to investigate the expression levels of thousands of genes simultaneously. Since DNA microarray data structures are various and complicative, the data are generally stored in databases for approaching to and controlling the data effectively. But we have some difficulties to analyze and control the data when the data are stored in the several database management systems or that the data are stored to the file format. The existing analysis tools for DNA microarray data have many difficult problems by complicated instructions, and dependency on data types and operating system. In this paper, we design and implement network-based analysis tool for obtaining to useful information from DNA microarray data. When we use this tool, we can analyze effectively DNA microarray data without special knowledge and education for data types and analytical methods.

  • PDF

Web-based DNA Microarray Data Analysis Tool

  • Ryu, Ki-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권4호
    • /
    • pp.1161-1167
    • /
    • 2006
  • Since microarray data structures are various and complicative, the data are generally stored in databases for approaching to and controlling the data effectively. But we have some difficulties to analyze and control the data when the data are stored in the several database management systems. The existing analysis tools for DNA microarray data have many difficult problems by complicated instructions, and dependency on data types and operating system, and high cost, etc. In this paper, we design and implement the web-based analysis tool for obtaining to useful information from DNA microarray data. When we use this tool, we can analyze effectively DNA microarray data without special knowledge and education for data types and analytical methods.

  • PDF

Metastasis Related Gene Exploration Using TwoStep Clustering for Medulloblastoma Microarray Data

  • Ban, Sung-Su;Park, Hee-Chang
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 추계학술대회
    • /
    • pp.153-159
    • /
    • 2005
  • Microarray gene expression technology has applications that could refine diagnosis and therapeutic monitoring as well as improve disease prevention through risk assessment and early detection. Especially, microarray expression data can provide important information regarding specific genes related with metastasis through an appropriate analysis. Various methods for clustering analysis microarray data have been introduced so far. We used twostep clustering fot ascertain metastasis related gene through t-test. Through t-test between two groups for two publicly available medulloblastoma microarray data sets, we intended to find significant gene for metastasis. The paper describes the process in detail showing how the process is applied to clustering analysis and t-test for microarray datasets and how the metastasis-associated genes are explorated.

  • PDF

Veri cation of Improving a Clustering Algorith for Microarray Data with Missing Values

  • Kim, Su-Young
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.315-321
    • /
    • 2011
  • Gene expression microarray data often include multiple missing values. Most gene expression analysis (including gene clustering analysis); however, require a complete data matric as an input. In ordinary clustering methods, just a single missing value makes one abandon the whole data of a gene even if the rest of data for that gene was intact. The quality of analysis may decrease seriously as the missing rate is increased. In the opposite aspect, the imputation of missing value may result in an artifact that reduces the reliability of the analysis. To clarify this contradiction in microarray clustering analysis, this paper compared the accuracy of clustering with and without imputation over several microarray data having different missing rates. This paper also tested the clustering efficiency of several imputation methods including our propose algorithm. The results showed it is worthwhile to check the clustering result in this alternative way without any imputed data for the imperfect microarray data.

Curve Clustering in Microarray

  • Lee, Kyeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권3호
    • /
    • pp.575-584
    • /
    • 2004
  • We propose a Bayesian model-based approach using a mixture of Dirichlet processes model with discrete wavelet transform, for curve clustering in the microarray data with time-course gene expressions.

  • PDF

Xperanto: A Web-Based Integrated System for DNA Microarray Data Management and Analysis

  • Park, Ji Yeon;Park, Yu Rang;Park, Chan Hee;Kim, Ji Hoon;Kim, Ju Ha
    • Genomics & Informatics
    • /
    • 제3권1호
    • /
    • pp.39-42
    • /
    • 2005
  • DNA microarray is a high-throughput biomedical technology that monitors gene expression for thousands of genes in parallel. The abundance and complexity of the gene expression data have given rise to a requirement for their systematic management and analysis to support many laboratories performing microarray research. On these demands, we developed Xperanto for integrated data management and analysis using user-friendly web-based interface. Xperanto provides an integrated environment for management and analysis by linking the computational tools and rich sources of biological annotation. With the growing needs of data sharing, it is designed to be compliant to MGED (Microarray Gene Expression Data) standards for microarray data annotation and exchange. Xperanto enables a fast and efficient management of vast amounts of data, and serves as a communication channel among multiple researchers within an emerging interdisciplinary field.

마이크로어레이 실험 및 분석 데이터 처리를 위한 통합 관리 시스템의 설계와 구현 (Design and Implementation of Integrated System for Microarray Data)

  • 이미경;최정현;조환규
    • 한국미생물·생명공학회지
    • /
    • 제31권2호
    • /
    • pp.182-190
    • /
    • 2003
  • 마이크로어레이 기술이 널리 이용됨에 따라 마이크로어레이 이미지 데이터와 이미지 분석 데이터들이 급격히 늘어나고 있다. 그러나 국내에서는 그 데이터들을 효율적으로 관리하기 위한 시스템이 개발되어 공개된 경우가 없다. 그리고 마이크로어레이 실험은 한 실험실에서 분석하고 연구할 수 있는 유전자의 수가 제한되어 있으므로 서로 다른 연구실에서 실험한 연구 결과들을 공유함으로써 실험의 중복을 막을 수 있고 그 연구 결과들을 축척할 수 있다. 본 논문에서는 마이크로어레이 이미지 데이터를 처리 및 관리하기 위한 통합 시스템, WEMA(Web management of MicroArray)를 개발하였다. WEMA는 마이크로어레이 데이터 표준 규정의 제안인 MIAME(Minimal Information About a Microarray Experiment)에서 정의한 데이터 요소를 바탕으로 데이터 스키마를 설계하였으며 마이크로어레이 실험 설계에 따라 체계적으로 데이터를 관리하기 위해서 공동적인 데이터 단위를 정의하였다. WEMA의 주요 기능은 마이크로어레이 이미지 및 분석 데이터의 효율적인 관리, 데이터입출력의 통합 기능, 메타 파일 생성 등이다. 본 WEMA 시스템을 이용해서 실제로 한 식물 분자 생물학 연구실에서 만들어내는 마이크로어레이 이미지 데이터를 처리, 관리한 결과 생물학자들이 마이크로어레이 데이터를 체계적으로 관리, 분석할 수 있었으며 연구자들간의 데이터 교환 및 의사 소통이 원활히 이루어졌다.

Comparison of methods for the proportion of true null hypotheses in microarray studies

  • Kang, Joonsung
    • Communications for Statistical Applications and Methods
    • /
    • 제27권1호
    • /
    • pp.141-148
    • /
    • 2020
  • We consider estimating the proportion of true null hypotheses in multiple testing problems. A traditional multiple testing rate, family-wise error rate is too conservative and old to control type I error in multiple testing setups; however, false discovery rate (FDR) has received significant attention in many research areas such as GWAS data, FMRI data, and signal processing. Identify differentially expressed genes in microarray studies involves estimating the proportion of true null hypotheses in FDR procedures. However, we need to account for unknown dependence structures among genes in microarray data in order to estimate the proportion of true null hypothesis since the genuine dependence structure of microarray data is unknown. We compare various procedures in simulation data and real microarray data. We consider a hidden Markov model for simulated data with dependency. Cai procedure (2007) and a sliding linear model procedure (2011) have a relatively smaller bias and standard errors, being more proper for estimating the proportion of true null hypotheses in simulated data under various setups. Real data analysis shows that 5 estimation procedures among 9 procedures have almost similar values of the estimated proportion of true null hypotheses in microarray data.

The Application of Machine Learning Algorithm In The Analysis of Tissue Microarray; for the Prediction of Clinical Status

  • Cho, Sung-Bum;Kim, Woo-Ho;Kim, Ju-Han
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.366-370
    • /
    • 2005
  • Tissue microarry is one of the high throughput technologies in the post-genomic era. Using tissue microarray, the researchers are able to investigate large amount of gene expressions at the level of DNA, RNA, and protein The important aspect of tissue microarry is its ability to assess a lot of biomarkers which have been used in clinical practice. To manipulate the categorical data of tissue microarray, we applied Bayesian network classifier algorithm. We identified that Bayesian network classifier algorithm could analyze tissue microarray data and integrating prior knowledge about gastric cancer could achieve better performance result. The results showed that relevant integration of prior knowledge promote the prediction accuracy of survival status of the immunohistochemical tissue microarray data of 18 tumor suppressor genes. In conclusion, the application of Bayesian network classifier seemed appropriate for the analysis of the tissue microarray data with clinical information.

  • PDF