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Abstract

Gene expression microarray data often include multiple missing values. Most gene expression analysis (in-

cluding gene clustering analysis); however, require a complete data matric as an input. In ordinary clustering

methods, just a single missing value makes one abandon the whole data of a gene even if the rest of data

for that gene was intact. The quality of analysis may decrease seriously as the missing rate is increased. In

the opposite aspect, the imputation of missing value may result in an artifact that reduces the reliability

of the analysis. To clarify this contradiction in microarray clustering analysis, this paper compared the

accuracy of clustering with and without imputation over several microarray data having different missing

rates. This paper also tested the clustering efficiency of several imputation methods including our proposed

algorithm. The results showed it is worthwhile to check the clustering result in this alternative way without

any imputed data for the imperfect microarray data.
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1. Introduction

Clustering is one of the core analyses for DNA microarray data. Clustering of microarray data is

used to find groups of similarly expressed genes among thousands of genes that might elucidate the

functional relationships within or among the groups of genes. The data from microarray experiments

is usually in the form of large matrices of expression levels of genes (rows) under different samples

(columns) and frequently with some values missing. To measure the similarity of genes, most of the

clustering methods use correlation which cannot be computed for the genes having missing values.

Missing value occurs commonly in microarray data and sometimes it is serious as more than 90%

of genes have missing values (Ouyang et al., 2004).

A typical solution to handle missing entries in a dataset is imputation. The missing value can be

predicted reasonably based on the values of the other genes in the same group. Many different

types of imputation methods have been introduced in microarray data analysis (Troyanskaya et al.,

2001). However, imputation has an intrinsic limitation that could mislead the clustering result due

to the use of estimated values. This becomes worse when the missing rate of the dataset increases
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or the missing values are severely localized on the one side of data matrix. An adverse effect of

imputation for the clustering of microarray data should be suspected in these circumstances. In

addition, the imputation needs almost the same amount of computation as the clustering method

itself.

Until now, the alternative approach which can cluster the microarray data directly without impu-

tation has not been seriously studied. It is required to verify the effect of a possible alternative

approach as well as the imputation on the clustering of imperfect microarray data.

2. Research Questions

We have developed a new gene clustering method based a one dimensional sample, which directly

cluster the microarray data having missing entries without imputation process. A gene with any

missing entry should be removed or imputed because the complete elements are necessary to com-

pute the distance of the multi-dimensional vector. However, our method could handle the missing

entries by the decomposition of multi dimensional data (genes for multiple samples) into one dimen-

sional data (genes for a sample). Initial clusters are generated for each sample without imputing

the missing values. Because each gene has multiple samples, the ignored gene in one sample by the

missing value can contribute to the clustering with the values in the other samples. In this way, the

method could fully use the remaining information even if a gene has missing values. The proposed

method(PM) can use any conventional clustering method to generate the initial clusters for each

sample. After the generation of the initial clusters for each sample, the cluster membership of each

gene is determined by combining the information of the initial clusters. The final assignment of the

cluster of a gene is decided based on the frequency and the validity of the assigned clusters for the

gene in the individual samples. The overall computational complexity is almost the same as the

typical clustering method.

There are clustering methods that include the imputation of the missing value inside of the clustering

process (Kim et al., 2006). This type of method tries to reduce the bad effect of improper imputation

by the iterative estimation of imputed values and optimized clusters. However, the computational

complexity is very high and they still include imputed values.

The validity of the proposed method(PM) which does not utilize any estimated value for the missing

entries during clustering process was tested with a model data and several real microarray data. The

effect of the various missing rate on the performance of different clustering methods was investigated

as well.

3. Research Algorithm and Validation

In the proposed method, each sample (column) of microarray data was initially clustered with

existing clustering algorithm and the validity of clusters of each sample was evaluated by gap

statistic (Tibshirani et al., 2001). The final cluster membership for a gene was decided by polling

the indices of clusters built in individual samples weighted by the validity of containing clusters and

the completeness of entries. The detailed process is as follows.

(1) Let E = {Eij , i = 1, . . . , N, j = 1, . . . ,M} be a gene expression matrix with gene set G =

{g1, . . . , gi, . . . , gN} and sample set S = {S1, . . . , Sj , . . . , SM}. At first, the expression values

Ei = {E1j , . . . , Eij , . . . , ENj} of sample j is clustered into K clusters Xk = {Xj1, Xj2, Xj3, . . . ,

XjK} with a given clustering method. In our test, we used the K-means (Hartigan and Wong,
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1979) algorithm for the clustering.

(2) Then, the Gap statistics, GPjk for each cluster Xjk, k = 1, 2, 3, . . . ,K in each sample are

calculated. The optimal number (k′) and the validity (GPjk′) of the given cluster set for

sample j are determined by gap statistic such that

k′ = the smallest k such that GPjk ≥ GPjk+1 − sdk+1,

where sd is the standard deviation of within dispersion measure of the cluster. The number of

clusters was tested up to 50 (K = 50) clusters for each sample.

(3) The optimal cluster number of whole samples is determined by the voting of samples weighted

by the gap statistic score. The optimal number (kj′) of clusters for individual sample is weighted

by fkj′ = GPjk′/(ΣjGPjk′). The optimal cluster number (K) of the whole sample is chosen

via,

K = argmax{kj′ |Σkj′fkj′}

means the cluster number having the highest frequency and gap statistic ratio.

(4) The sample that has the lowest number of missing entries among the samples having K (the

optimal number) clusters with highest fKj′ becomes the representative sample, R. The cluster

index (Cjh = 1, . . . ,K) of sample j is assigned to the corresponding cluster index (Ck =

C1, . . . , CK) of the representative sample R in the condition that the intersection of matched

members is maximized.

(5) The final cluster membership (Cgi) for a gene, gi is decided by the weighted polling of the

cluster index (Ck) assigned for an individual sample j such that

Cgi = argmax{Ck|ΣCkfkj′}.

The proposed clustering method was applied to five different datasets contained one supervised

data and four unsupervised data. The well known iris dataset was selected as a model dataset for

the primary test of the performance of methods.

This dataset is obtained from UCI Repository Of Machine Learning Databases and Domain Theo-

ries (ics.uci.edu: pub/machine-learning-databases). The dataset, which is supervised data, contains

three clusters of iris species setosa, versicolor, and virginica with 50 instances each which are well

separated by four different features of flowers. To evaluate the methods with real world microarray

data, we chose four different types of microarray datasets. SRBCT dataset has 2308 genes and 63

experimental conditions with 8 Burkitt Lymphoma(BL), 23 Ewing Sarcoma(EWS), 12 neuroblas-

toma(NB), and 20 rhabdomyosarcoma(RMS) samples (Khan et al., 2001). Colon dataset consists

of 2000 genes using an Affymetrix Oligonucleotide array from 22 normal and 40 colon tumor tissues

(Alon et al., 1999). Five tissues dataset has 3529 genes and 10 samples; 2 samples for each of

5 subclasses (testes, brain, liver, muscle and bone marrow) (Le et al., 2004). The breast cancer

dataset has 3226 genes and 22 samples (Hedenfalk et al., 2001). Table 3.1 shows summary of five

datasets in this paper.

The basic goal of this research was to verify if the proposed method(PM) could alternate the

conventional clustering methods that need imputation. At first, the innate clustering performance

of the proposed method was examined with a supervised and complete dataset. Because the clusters

of the iris data is already known, we could estimate the clustering accuracy of the methods by
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Table 3.1. Summary of the dataset used in this study

Dataset Size(indivisduals ∗ samples) Classes (] of samples)

Sepal length (1)

Iris
150 ∗ 4 Sepal width (1)

Supervised data Petal length (1)

Petal width (1)

Burkitt lymphoma (8)

Small Round Blue Cell Tumo 2308 ∗ 63 Neuroblastoma (12)

(SRBCT) Unsupervised data Rhabdomyosarcoma (20)

Ewing sarcoma (23)

Colon
2000 ∗ 62 Normal (22)

Unsupervised data Tumor colon tissues (40)

3226 ∗ 22
BRACA1 (7)

Breast Cancer
Unsupervised data

BRACA2 (8)

Sporadic (7)

Testes (2)

3529 ∗ 10
Brain (2)

Five Tissues
Unsupervised data

Liver (2)

Muscle (2)

Bone marrow (2)

Table 3.2. The performances of various clustering methods on iris datasets.

Method Average silhouette coefficient Accuracy (%)

PM 0.55 96

K-means 0.55 91.33

SVD 0.54 90.7

Hierarchical 0.51 89.4

Diana 0.53 92.1

Fuzzy 0.54 92

comparing with the true clusters (three clusters of iris species) suggested from the dataset itself. The

validity of clusters was evaluated by a silhouette coefficient that measures the quality of a clustering

result by the within cluster compactness and the inter cluster separation (Rousseeuw, 1987). The

average silhouette coefficient of the resulting clusters was used to validate each method. Table 3.2

shows that the validity of clusters and the accuracy of the proposed method outperforms against

the other methods such as K-means, Singular Value Decomposition based method(SVDimpute),

Hierarchical, DIANA(DIvisive ANAlysis), and Fuzzy clustering methods. In these methods, SVD

imputation attempts to utilize the global information in the entire matrix in predicting the missing

values. The basic concept is to find the dominant components summarizing the entire matrix

and then to predict the missing values in the target genes by regressing against the dominant

components. If we perform SVD to matrix Y , we get the following equation.

AM×N = UM×MΣM×NV T
N×N , (Alter et al., 2000; Anderson, 1984; Golub and Van Loan, 1996).

Let L = min{M,N}, matrix V T now contains L eigengenes vl (0 < l < L), and matrix U contains

L eigenarrays ul (0 < l < L). In the algorithm SVDimpute, the k most significant eigengenes from

V T are selected, and missing value Ai,j is estimated by first regressing the expression profile vector

of gene i against the K eigengenes and then using the coefficients of the regression to reconstruct

Âi,j from a linear combination of the K eigengenes. If we denote the expression profile vector of

gene i in A as a and assume that vl (l = 1, 2, . . . ,K) are the eigengenes, ṽl and ã are vectors that are
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Figure 3.1. The accuracy measure for proposed method(PM) and K-means method combined with KNN imputation (KNN+k-
means) on iris dataset with different missing rates.

obtained by deleting the jth component of vl and a, then the missing component Ai,j is estimated

as follows.

Âi,j =

k∑
l=1

(
ṽl

T • ã
)
vl,j , (Gan et al., 2006).

Since SVD can only be performed on complete matrices, the iterative expectation maximization

method is used. The hierarchical clustering algorithm used is based on the average linkage method.

All of these methods were selected because they have been introduced in microarray data analysis be-

fore (Kaufman and Rousseeuw, 1990). Interestingly, the silhouette coefficient of K-means that was

used in our clustering step shows a tie with ours. The accuracy improvement was prominent against

conventional clustering methods. The results verify that the method combining one-dimensional

clusters which has never been introduced in microarray data analysis is not inferior to the other

conventional methods that use the multi-dimensional sample space together. The advantage of

our algorithm was significant when it was applied to the incomplete datasets with missing entries.

Figure 3.1 shows that the accuracy of our algorithm and K-means clustering combined with K-

nearest neighbor(KNN) imputation method (Troyanskaya et al., 2001) over imperfect datasets with

different missing rates.

Although a smaller percentage of missing data makes data imputation more precise, our algorithm is

robust to increasing the percent of values missing. As the missing rate is increased, the conventional

method loses accuracy dramatically; however, our algorithm maintains the accuracy in acceptable

ranges over 90%. It is notable that our algorithm does not use any imputed values. The result

means that the imputed value could mislead the clustering result seriously when the missing rate

becomes high. This is because the usual imputation method which also use the correlation metric

cannot use the information of the genes having missing entries in any sample of the dataset. For

the imputation of a missing value of a target gene, the group of highly similar reference genes with

no missing entries is required. The increase of the missing rate increase the number of less similar

genes in this reference group and the resulting imputation value would mislead the clustering of

the target gene. The result from iris data with missing entries supports that the proposed method
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Table 3.3. The average silhouette coefficients of various clustering methods for the four microarray datasets.

Method
Datasets

Ave
SRBCT Colon 5 Tissue Breast

PM 0.22 0.20 0.62 0.20 0.31

K-means 0.15 0.23 0.48 0.18 0.26

SVD 0.17 0.20 0.49 0.16 0.25

Hierarchical 0.21 0.17 0.19 0.13 0.17

Diana 0.18 0.23 0.26 0.24 0.23

Fuzzy 0.20 0.12 0.05 0.13 0.12

Table 3.4. Performances of proposed method(PM) and K-means method combined with KNN imputation(KM) on the four
microarray datasets with different missing rates.

Method
missing rate (%)

5 10 15 20 25

SRBCT
(PM) 99.2 97.8 97 96.33 95.4

(KM) 98.8 97.18 96.5 96.1 95

Colon
(PM) 97.5 95.4 94 92.7 88.3

(KM) 97.4 96.6 93.23 85 64.4

5 Tissue
(PM) 99.4 98 97.4 95.55 95

(KM) 99.2 98 95.91 92 84

Breast
(PM) 99.5 98.4 97 96.7 95

(KM) 98.9 97.6 97.1 94.91 94.2

which directly cluster the incomplete dataset is an appropriate alternative solution to overcome the

deleterious effect of imputation.

We have also compared the methods in the microarray data. The overall validity score of the

resulting cluster was higher in the proposed method (Table 3.3).

In these real world data, the performance of the methods fluctuated depending on the dataset and

the type of methods; however, our algorithm showed a stably high performance. In the case of

microarray data, it is not possible to be sure what the true clusters are. Therefore we checked the

relative accuracy by comparing the clustering result of a method from an incomplete dataset with

the clusters acquired by the same clustering method with a complete dataset. Table 3.4 shows that

the performance of our clustering method over the microarray datasets with different missing rate.

All compared methods used the KNN method for the imputation.

Our algorithm outperformed as the iris dataset for colon cancer (Colon) and five tissue (5 Tissue)

datasets; in addition, it worked similarly well for SRBCT and breast cancer (Breast) datasets. Once

again, the performance of K-means with imputation method was significantly changed depending

on the datasets; however, K-means with our algorithm showed a consistently high performance.

4. Conclusion

This paper presents a new clustering method that does not require an imputation step to estimate

missing values by combining the information of one dimensional (single sample) clusters. Surpris-

ingly, this approach was comparable or superior with conventional methods in its performance for

the complete dataset. In the test of the model dataset with missing entries, the advantage of this

method was significant. The same clustering method (K-means) showed a huge difference in its

performance depending on the use of imputation and our direct clustering method when the miss-
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ing rate was high. It can be practically useful in saving the data of some accidental microarray

experiments with high missing entries. In addition, our algorithm showed the superior performance

for the real microarray data analysis. The performance of the methods fluctuated depending on the

types of microarray datasets; however, our algorithm maintained a stable performance.

Our algorithm is a totally new alternative clustering approach for imperfect microarray data. We

suggest that it is worthwhile to check the clustering result through this alternative way without any

imputed data for the incomplete microarray data especially when the missing rate of the data is high.

However, it is important to exercise caution when drawing critical biological conclusions from data

that is partially calculated. The goal of this method is to provide an accurate way of clustering

a microarray with missing values in order to minimally bias the performance of the microarray

analysis methods. However, calculated data should be flagged where possible and its significance

on the discovery of biological results should be assessed in order to avoid drawing unwarranted

conclusions
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