• Title/Summary/Keyword: microaccelerometer

Search Result 24, Processing Time 0.022 seconds

Thermal Behaviors Analysis for SOI Wafers (SOI 웨이퍼의 열적거동 해석)

  • 김옥삼
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.105-109
    • /
    • 2000
  • Micronization of sensor is a trend of the silicon sensor development with regard to a piezoresistive silicon pressure sensor the size of the pressure sensor diaphragm have become smaller year by year and a microaccelerometer with a size less than 200-300${\mu}m$ has been realized. In this paper we study some of the micromachining processes of SOI(silicon on insulator)for the microaccelerometer and their subsequent processes which might affect thermal loads. The finite element method(FEM) has been a standard numerical modeling technique extensively utilized in structural engineering discipline for design of SOI wafers. Successful thermal behaviors analysis and design of the SOI wafers based on the tunneling current concept using SOI wafer depend on the knowledge abut normal mechanical properties of the SCS(single crystal silicon)layer and their control through manufacturing process

  • PDF

Analysis of Temperature Distribution using Finite Element Method for SCS Insulator Wafers (유한요소법을 이용한 SCS 절연 웨이퍼의 온도분포 해석)

  • Kim, O.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.11-17
    • /
    • 2001
  • Micronization of sensor is a trend of the silicon sensor development with regard to a piezoresistive silicon pressure sensor, the size of the pressure sensor diaphragm have become smaller year by year, and a microaccelerometer with a size less than $200{\sim}300{\mu}m$ has been realized, In this paper, we study some of the bonding processes of SCS(single crystal silicon) insulator wafer for the microaccelerometer. and their subsequent processes which might affect thermal loads. The finite element method(FEM) has been a standard numerical modeling technique extensively utilized in micro structural engineering discipline for design of SCS insulator wafers. Successful temperature distribution analysis and design of the SCS insulator wafers based on the tunneling current concept using microaccelerometer depend on the knowledge about normal mechanical properties of the SCS and $SiO_2$ layer and their control through manufacturing processes.

  • PDF

Fast Simulation of Output Voltage for High-Shock Piezoresistive Microaccelerometer Using Mode Superposition Method and Least Square Method (모드중첩법 및 최소자승법을 통한 고충격 압저항 미소가속도계의 출력전압 해석)

  • Han, Jeong-Sam;Kwon, Ki-Beom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.777-787
    • /
    • 2012
  • The transient analysis for the output voltage of a piezoresistive microaccelerometer takes a relatively high computation time because at least two iterations are required to calculate the piezoresistive-structural coupled response at each time step. In this study, the high computational cost for calculating the transient output voltage is considerably reduced by an approach integrating the mode superposition method and the least square method. In the approach, data on static displacement and output voltage calculated by piezoresistive-structural coupled simulation for three acceleration inputs are used to develop a quadratic regression model, relating the output voltage to the displacement at a certain observation point. The transient output voltage is then approximated by a regression model using the displacement response cheaply calculated by the mode superposition method. A high-impact microaccelerometer subject to several types of acceleration inputs such as 100,000 G shock, sine, step, and square pulses are adopted as a numerical example to represent the efficiency and accuracy of the suggested approach.

Finite Element Analysis for Thermal Stresses of Microaccelerometers (마이크로가속도계의 열응력에 대한 유한요소해석)

  • 김옥삼
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.100-104
    • /
    • 2000
  • This paper deals with finite element analyses of residual stresses causing popping up which are induced in micromachining processes of a mcroaccelerometers. After heating the tunnel gap up to 100 degree and get it through the cooling process and the additional bean up to 80 degree and get is through the cooling process. We learn the thermal internal stress of each shape and compare the results with each other after heating the tunnel gap up to 400 degree during the Pt deposition process. We want to seek after the real cause of this pop up phenomenon and diminish this by change manufacturing processes of microaccelerometer by electrostatic force.

  • PDF

A Polysilicon Capacitive Microaccelerometer with Unevenly Distributed Comb Electrodes (비등간격 수평감지 전극구조의 정전용량형 다결정 실리콘 가속도계)

  • Han, Ki-Ho;Cho, Young-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.7
    • /
    • pp.346-350
    • /
    • 2001
  • We present a surface-micromachined polysilicon capacitive accelerometer using unevenly distributed comb electrodes. The unique features of the accelerometer include a perforated proof-mass and the inner and outer comb electrodes with uneven electrode gaps. The perforated proof-mass reduces stiction between the structure and the substrate and the unevenly distributed electrodes shorten the electrode length required for a given sensitivity. The polysilicon accelerometer has been fabricated by the conventional 6-mask surface-micromachining process and showes a sensitivity of 1.03mV/g with a hybrid detection circuitry.

  • PDF

Analyses of Temperature Behaviours at Fabrication Processes for Microaccelerometer Sensors (마이크로가속도계 센서의 제작공정에서 온도거동 해석)

  • Kim, O.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.73-79
    • /
    • 2001
  • 정전기력을 이용하는 마이크로가속도계 센서는 단결성 실리콘 SOI(Silicon On Insulator) 웨이퍼의 기판에 절전재료 적층과 등방성 및 이방성 부식공정으로 제작한다. 마이크로가속도 센서 개발에는 3차원 미소구조체의 제작공정에서 가열 및 냉각공정의 온도구배로 야기되는 포핑업과 같은 열변형 해석이 최적 형상설계에 중요한 요건이다. 본 연구에서는 양자역학적 현상인 턴널링전류 원리로 승용차 에어백의 검침부 역할을 하는 마이크로가속도 센서의 제조공정에서 소착현상을 방지하는 부가 비임과 턴널갭의 FIB 절단가공과 백금 적층공정의 열적 거동을 해석한다. 마이크로머시닝 공정에서 온도의존성을 고려하여 연성해석하고 유한요소법의 상용코드인 MARC K6.1로 분석한 결과를 단결정 실리콘 웨이퍼로 가공하는 마이크로가속도 센서의 최적공정 및 형상설계를 위한 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF

A MEMS Z-axis Microaccelerometer for Vertical Motion Sensing of Mobile Robot (이동 로봇의 수직 운동 감지를 위한 초소형 MEMS Z축 가속도계)

  • Lee, Sang-Min;Cho, Dong-Il Dan
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.249-254
    • /
    • 2007
  • 본 논문에서는 웨이퍼 레벨 밀봉 실장된 수직 운동 가속도 신호를 감지할 수 있는 초소형 Z축 가속도 센싱 엘리먼트를 제작하였다. 초소형 Z축 가속도 센싱 엘리먼트는 수직 방향의 정전용량 변화를 필요로 하기 때문에 단일 기판상에 수직 단차의 형성을 가능케 하는 확장된 희생 몸체 미세 가공 기술 (Extended Sacrificial Bulk Micromachining, ESBM) 을 이용하여 제작되었다. 확장된 희생 몸체 미세 가공 기술을 이용하면 정렬오차가 없이 상하부 양쪽에 수직 단차를 갖는 실리콘 구조물의 제작이 가능하다. 또한, MEMS 센싱 엘리먼트의 부유된 실리콘 구조물을 보호하기 위하여 웨이퍼 레벨 밀봉 실장 기술이 적용하여 고신뢰성, 고수율, 고성능의 Z축 가속도 센서를 제작하였다. 신호 처리 회로와 가속도 센서를 결합하여 Z축 가속도 센싱 시스템을 제작하였고 운동가속도 범위 10 g 이상, 정지 드리프트 17.3 mg 그리고 대역폭 60 Hz 이상의 성능을 나타내었다.

  • PDF

Capacitive Readout Circuit for Tri-axes Microaccelerometer with Sub-fF Offset Calibration

  • Ouh, Hyun Kyu;Choi, Jungryoul;Lee, Jungwoo;Han, Sangyun;Kim, Sungwook;Seo, Jindeok;Lim, Kyomuk;Seok, Changho;Lim, Seunghyun;Kim, Hyunho;Ko, Hyoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.83-91
    • /
    • 2014
  • This paper presents a capacitive readout circuit for tri-axes microaccelerometer with sub-fF offset calibration capability. A charge sensitive amplifier (CSA) with correlated double sampling (CDS) and digital to equivalent capacitance converter (DECC) is proposed. The DECC is implemented using 10-bit DAC, charge transfer switches, and a charge-storing capacitor. The DECC circuit can realize the equivalent capacitance of sub-fF range with a smaller area and higher accuracy than previous offset cancelling circuit using series-connected capacitor arrays. The readout circuit and MEMS sensing element are integrated in a single package. The supply voltage and the current consumption of analog blocks are 3.3 V and $230{\mu}A$, respectively. The sensitivities of tri-axes are measured to be 3.87 mg/LSB, 3.87 mg/LSB and 3.90 mg/LSB, respectively. The offset calibration which is controlled by 10-bit DECC has a resolution of 12.4 LSB per step with high linearity. The noise levels of tri-axes are $349{\mu}g$/${\sqrt}$Hz, $341{\mu}g$/${\sqrt}$Hz and $411{\mu}g$/${\sqrt}$Hz, respectively.

Feedback Control for Expanding Range and Improving Lineraity of Microaccelerometers (가속도계의 동작범위 확장와 선형성 향상을 위한 피드백 제어)

  • Park, Yong-Hwa;Park, Sang-Jun;Choi, Byung-Doo;Ko, Hyoung-Ho;Song, Tae-Yong;Lim, Genu-Won;Huh, Kun-Soo;Park, Jahng-Hyon;Cho, Dong-il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1082-1088
    • /
    • 2004
  • This paer presents a feedback-controlled, MEMS-fabricated microaccelerometer($\mu$XL). The $\mu$XL has received much commercial attraction, but its performance is generally limited. To improve the open-loop performance, a feedback controller is designed and experimentally evaluated. The feedback controller is applied to the x/y-axis $\mu$XL fabricated by sacrificial bulk micromachining(SBM) process. Even though the resolution of the closed-loop system is slightly worse than open-loop system, the bandwidth, linearity, and bias stability are stability are significantly improved. The noise equivalent resolution of open-loop system is 0.615 mg and that of closed-loop system is 0.864 mg. The bandwidths of open-loop and closed-loop system are over 100Hz. The input range, non-linearity and bias stability are improved from $\pm10\;g\;to\;\pm18g$, from 11.1%FSO to 0.86%FSO, and from 0.221 mg to 0.128 mg by feedback control, respectively.

Design, Fabrication and Micromachining Error Evaluation for a Surface-Micromachined Polysilicon Capacitice Accelerometer (표면미세가공기술을 이용한 수평감지방식의 정전용량형 다결정 실리콘 가속도계의 설계, 제작 및 가공 오차 영향 분석)

  • Kim, Jong-Pal;Han, Gi-Ho;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.529-536
    • /
    • 2001
  • We investigate a surface-micromachined capacitive accelerometer with the grid-type electrodes surrounded by a perforated proof-mass frame. An electromechanical analysis of the microaccelerometer has been performed to obtain analytical formulae for natural frequency and output sensitivity response estimation. A set of prototype devices has been designed and fabricated based on a 4-mask surface-micromachining process. The resonant frequency of 5.8$\pm$0.17kHz and the detection sensitivity of 0.28$\pm$0.03mV/g have been measured from the fabricated devices. The parasitic capacitance of the detection circuit with a charge amplifier has been measured as 3.34$\pm$1.16pF. From the uncertainty analysis, we find that the major uncertainty in the natural frequency of the accelerometer comes from the micromachining error in the beam width patterning process. The major source of the sensitivity uncertainty includes uncertainty of the parasitic capacitance, the inter-electrode gap and the resonant frequency, contributing to the overall sensitivity uncertainty in the portions of 75%, 14% and 11%, respectively.