• 제목/요약/키워드: microRNAs

검색결과 370건 처리시간 0.031초

Role of MicroRNAs in the Warburg Effect and Mitochondrial Metabolism in Cancer

  • Jin, Li-Hui;Wei, Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권17호
    • /
    • pp.7015-7019
    • /
    • 2014
  • Metabolism lies at the heart of cell biology. The metabolism of cancer cells is significantly different from that of their normal counterparts during tumorigenesis and progression. Elevated glucose metabolism is one of the hallmarks of cancer cells, even under aerobic conditions. The Warburg effect not only allows cancer cells to meet their high energy demands and supply biological materials for anabolic processes including nucleotide and lipid synthesis, but it also minimizes reactive oxygen species production in mitochondria, thereby providing a growth advantage for tumors. Indeed, the mitochondria also play a more essential role in tumor development. As information about the numorous microRNAs has emerged, the importance of metabolic phenotypes mediated by microRNAs in cancer is being increasingly emphasized. However, the consequences of dysregulation of Warburg effect and mitochondrial metabolism modulated by microRNAs in tumor initiation and progression are still largely unclear.

Identification of Genes and MicroRNAs Involved in Ovarian Carcinogenesis

  • Wan, Shu-Mei;Lv, Fang;Guan, Ting
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.3997-4000
    • /
    • 2012
  • MicroRNAs (miRNAs) play roles in the clinic, both as diagnostic and therapeutic tools. The identification of relevant microRNAs is critically required for ovarian cancer because of the prevalence of late diagnosis and poor treatment options currently. To identify miRNAs involved in the development or progression of ovarian cancer, we analyzed gene expression profiles downloaded from Gene Expression Omnibus. Comparison of expression patterns between carcinomas and the corresponding normal ovarian tissues enabled us to identify 508 genes that were commonly up-regulated and 1331 genes that were down-regulated in the cancer specimens. Function annotation of these genes showed that most of the up-regulated genes were related to cell cycling, and most of the down-regulated genes were associated with the immune response. When these differentially expressed genes were mapped to MiRTarBase, we obtained a total of 18 key miRNAs which may play important regulatory roles in ovarian cancer. Investigation of these genes and microRNAs should help to disclose the molecular mechanisms of ovarian carcinogenesis and facilitate development of new approaches to therapeutic intervention.

Next-generation sequencing analysis of exosomal microRNAs: Fusobacterium nucleatum regulates the expression profiling of exosomal microRNAs in human colorectal cancer cells

  • Yu, Mi Ra;Kim, Hye Jung;Kang, Ji Wan;Kim, Yun Hak;Park, Hae Ryoun
    • International Journal of Oral Biology
    • /
    • 제45권3호
    • /
    • pp.134-142
    • /
    • 2020
  • Colon cancer is one of the most common malignant tumors, but there are still a few validated biomarkers of colon cancer. Exosome-mediated microRNAs (miRNAs) have been recognized as potential biomarkers in cancers, and miRNAs can regulate a variety of genes. Recently, Fusobacterium nucleatum was discovered in the tissues of human colon cancer patients. Its role in colon cancer was highlighted. F. nucleatum may contribute to the progression of colon cancer through the mechanism of exosome-mediated miRNAs transfer. However, the exosomal miRNAs regulation mechanism by F. nucleatum in colon cancer is not well known. Thus, we performed next-generation sequencing to investigate the overall pattern of exosomal miRNAs expression in the colon cancer cell culture supernatant. We have confirmed the alterations of various exosomal miRNAs. In addition, to investigate the function of exosomal miRNAs, a Kyoto Encyclopedia of Genes and Genomes analysis was performed on the target genes of changed miRNAs. Potential target genes were associated with a variety of signaling pathways, and one of these pathways was related to colorectal cancer. These findings suggested that F. nucleatum can alter exosomal miRNAs released from colorectal cancer cells. Furthermore, exosomal miRNAs altered by F. nucleatum could be potential biomarkers for the diagnosis and therapy of colon cancer.

Interplays between human microbiota and microRNAs in COVID-19 pathogenesis: a literature review

  • Hong, Bok Sil;Kim, Myoung-Ryu
    • 운동영양학회지
    • /
    • 제25권2호
    • /
    • pp.1-7
    • /
    • 2021
  • [Purpose] Recent studies have shown that COVID-19 is often associated with altered gut microbiota composition and reflects disease severity. Furthermore, various reports suggest that the interaction between COVID-19 and host-microbiota homeostasis is mediated through the modulation of microRNAs (miRNAs). Thus, in this review, we aim to summarize the association between human microbiota and miRNAs in COVID-19 pathogenesis. [Methods] We searched for the existing literature using the keywords such "COVID-19 or microbiota," "microbiota or microRNA," and "COVID-19 or probiotics" in PubMed until March 31, 2021. Subsequently, we thoroughly reviewed the articles related to microbiota and miRNAs in COVID-19 to generate a comprehensive picture depicting the association between human microbiota and microRNAs in the pathogenesis of COVID-19. [Results] There exists strong experimental evidence suggesting that the composition and diversity of human microbiota are altered in COVID-19 patients, implicating a bidirectional association between the respiratory and gastrointestinal tracts. In addition, SARS-CoV-2 encoded miRNAs and host cellular microRNAs modulated by human microbiota can interfere with viral replication and regulate host gene expression involved in the initiation and progression of COVID-19. These findings suggest that the manipulation of human microbiota with probiotics may play a significant role against SARS-CoV-2 infection by enhancing the host immune system and lowering the inflammatory status. [Conclusion] The human microbiota-miRNA axis can be used as a therapeutic approach for COVID-19. Hence, further studies are needed to investigate the exact molecular mechanisms underlying the regulation of miRNA expression in human microbiota and how these miRNA profiles mediate viral infection through host-microbe interactions.

Rules for functional microRNA targeting

  • Kim, Doyeon;Chang, Hee Ryung;Baek, Daehyun
    • BMB Reports
    • /
    • 제50권11호
    • /
    • pp.554-559
    • /
    • 2017
  • MicroRNAs (miRNAs) are ~22nt-long single-stranded RNA molecules that form a RNA-induced silencing complex with Argonaute (AGO) protein to post-transcriptionally downregulate their target messenger RNAs (mRNAs). To understand the regulatory mechanisms of miRNA, discovering the underlying functional rules for how miRNAs recognize and repress their target mRNAs is of utmost importance. To determine functional miRNA targeting rules, previous studies extensively utilized various methods including high-throughput biochemical assays and bioinformatics analyses. However, targeting rules reported in one study often fail to be reproduced in other studies and therefore the general rules for functional miRNA targeting remain elusive. In this review, we evaluate previously-reported miRNA targeting rules and discuss the biological impact of the functional miRNAs on gene-regulatory networks as well as the future direction of miRNA targeting research.

MicroRNAs: promising biomarkers for diagnosis and therapeutic targets in human colorectal cancer metastasis

  • Hur, Keun
    • BMB Reports
    • /
    • 제48권4호
    • /
    • pp.217-222
    • /
    • 2015
  • Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death worldwide. Distant metastasis is a major cause of mortality in CRC. MicroRNAs (miRNAs) are small non-coding RNA molecules involved in the post-transcriptional and translational regulation of gene expression. Many miRNAs are aberrantly expressed in cancer and influence tumor progression. Accumulating studies suggest that multiple miRNAs are actively involved in the CRC metastasis process. Thus, we aim to introduce the role of miRNAs in multi-steps of CRC metastasis, including cancer cell invasion, intravasation, circulation, extravasation, colonization, angiogenesis, and epithelial-mesenchymal transition (EMT). Moreover, we suggest the potential application of miRNAs as biomarkers for CRC patients with metastasis. [BMB Reports 2015; 48(4): 217-222]

microRNA biomarkers in cystic diseases

  • Woo, Yu Mi;Park, Jong Hoon
    • BMB Reports
    • /
    • 제46권7호
    • /
    • pp.338-345
    • /
    • 2013
  • microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by targeting the 3'-untranslated region of multiple target genes. Pathogenesis results from defects in several gene sets; therefore, disease progression could be prevented using miRNAs targeting multiple genes. Moreover, recent studies suggest that miRNAs reflect the stage of the specific disease, such as carcinogenesis. Cystic diseases, including polycystic kidney disease, polycystic liver disease, pancreatic cystic disease, and ovarian cystic disease, have common processes of cyst formation in the specific organ. Specifically, epithelial cells initiate abnormal cell proliferation and apoptosis as a result of alterations to key genes. Cysts are caused by fluid accumulation in the lumen. However, the molecular mechanisms underlying cyst formation and progression remain unclear. This review aims to introduce the key miRNAs related to cyst formation, and we suggest that miRNAs could be useful biomarkers and potential therapeutic targets in several cystic diseases.

Global and Local Competition between Exogenously Introduced microRNAs and Endogenously Expressed microRNAs

  • Kim, Doyeon;Kim, Jongkyu;Baek, Daehyun
    • Molecules and Cells
    • /
    • 제37권5호
    • /
    • pp.412-417
    • /
    • 2014
  • It has been reported that exogenously introduced micro-RNA (exo-miRNA) competes with endogenously expressed miRNAs (endo-miRNAs) in human cells, resulting in a detectable upregulation of mRNAs with endo-miRNA target sites (TSs). However, the detailed mechanisms of the competition between exo- and endo-miRNAs remain uninvestigated. In this study, using 74 microarrays that monitored the whole-transcriptome response after introducing miRNAs or siRNAs into HeLa cells, we systematically examined the derepression of mRNAs with exo- and/or endo-miRNA TSs. We quantitatively assessed the effect of the number of endo-miRNA TSs on the degree of mRNA derepression. As a result, we observed that the number of endo-miRNA TSs was significantly associated with the degree of derepression, supporting that the derepression resulted from the competition between exo- and endo-miRNAs. However, when we examined whether the site proficiency of exo-miRNA TSs could also influence mRNA derepression, to our surprise, we discovered a strong positive correlation. Our analysis indicates that site proficiencies of both exo- and endo-miRNA TSs are important determinants for the degree of mRNA derepression, implying that the derepression of mRNAs in response to exo-miRNA is more complex than that currently perceived. Our observations may lead to a more complete understanding of the detailed mechanisms of the competition between exo- and endo-miRNAs and to a more accurate prediction of miRNA targets. Our analysis also suggests an interesting hypothesis that long 3'-UTRs may function as molecular buffer against gene expression regulation by individual miRNAs.

MicroRNAs regulate granulosa cells apoptosis and follicular development - A review

  • Gong, Zhuandi;Yang, Juan;Bai, Shengju;Wei, Suocheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권11호
    • /
    • pp.1714-1724
    • /
    • 2020
  • Objective: MicroRNAs (miRNAs) are the most abundant small RNAs. Approximately 2,000 annotated miRNAs genes have been found to be differentially expressed in ovarian follicles during the follicular development (FD). Many miRNAs exert their regulatory effects on the apoptosis of follicular granulosa cells (FGCs) and FD. However, accurate roles and mechanism of miRNAs regulating apoptosis of FGCs remain undetermined. Methods: In this review, we summarized the regulatory role of each miRNA or miRNA cluster on FGCs apoptosis and FD on the bases of 41 academic articles retrieved from PubMed and web of science and other databases. Results: Total of 30 miRNAs and 4 miRNAs clusters in 41 articles were reviewed and summarized in the present article. Twenty nine documents indicated explicitly that 24 miRNAs and miRNAs clusters in 29 articles promoted or induced FGCs apoptosis through their distinctive target genes. The remaining 10 miRNAs and miRNAs of 12 articles inhibited FGCs apoptosis. MiRNAs exerted modulation actions by at least 77 signal pathways during FGCs apoptosis and FD. Conclusion: We concluded that miRNAs or miRNAs clusters could modulate the apoptosis of GCs (including follicular GCs, mural GCs and cumulus cells) by targeting their specific genes. A great majority of miRNAs show a promoting role on apoptosis of FGCs in mammals. But the accurate mechanism of miRNAs and miRNA clusters has not been well understood. It is necessary to ascertain clearly the role and mechanism of each miRNA or miRNA cluster in the future. Understanding precise functions and mechanisms of miRNAs in FGCs apoptosis and FD will be beneficial in developing new diagnostic and treatment strategies for treating infertility and ovarian diseases in humans and animals.

Therapeutic implications of microRNAs in pulmonary arterial hypertension

  • Lee, Aram;McLean, Danielle;Choi, Jihea;Kang, Hyesoo;Chang, Woochul;Kim, Jongmin
    • BMB Reports
    • /
    • 제47권6호
    • /
    • pp.311-317
    • /
    • 2014
  • microRNAs (miRNAs) are a class of small, non-coding RNAs that play critical posttranscriptional regulatory roles typically through targeting of the 3'-untranslated region of messenger RNA (mRNA). Mature miRNAs are known to be involved in global cellular processes, such as differentiation, proliferation, apoptosis, and organogenesis, due to their capacity to target multiple mRNAs. Thus, imbalances in the expression and/or activity of miRNAs are involved in the pathogenesis of numerous diseases, including pulmonary arterial hypertension (PAH). PAH is a progressive disease characterized by vascular remodeling due to excessive proliferation of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs). Recently, studies have evaluated the roles of miRNAs involved in the pathogenesis of PAH in these pulmonary vascular cells. This review provides an overview of recent discoveries on the role of miRNAs in the pathogenesis of PAH and discusses the potential for miRNAs as therapeutic targets and biomarkers of PAH.