MicroRNAs regulate granulosa cells apoptosis and follicular development - A review |
Gong, Zhuandi
(Hospital, Northwest Minzu University)
Yang, Juan (College of Life Science and Engineering, Northwest Minzu University) Bai, Shengju (Hospital, Northwest Minzu University) Wei, Suocheng (College of Life Science and Engineering, Northwest Minzu University) |
1 | Shi L, Liu S, Zhao W, Shi J. miR-483-5p and miR-486-5p are down-regulated in cumulus cells of metaphase II oocytes from women with polycystic ovary syndrome. Reprod Biomed Online 2015;31:565-72. https://doi.org/10.1016/j.rbmo.2015.06.023 DOI |
2 | Liu J, Yao W, Yao Y, et al. MiR-92a inhibits porcine ovarian granulosa cell apoptosis by targeting Smad7 gene. FEBS Lett 2014;588:4497-503. https://doi.org/10.1016/j.febslet.2014. 10.021 DOI |
3 | Liu J, Tu F, Yao W, et al. Conserved miR-26b enhances ovarian granulosa cell apoptosis through HAS2-HA-CD44-Caspase-3 pathway by targeting HAS2. Sci Rep 2016;6:21197. https://doi.org/10.1038/srep21197 DOI |
4 | Li Y, Ganta S, Cheng C, Craig R, Ganta RR, Freeman LC. FSH stimulates ovarian cancer cell growth by action on growth factor variant receptor. Mol Cell Endocrinol 2007;267:26-37. https://doi.org/10.1016/j.mce.2006.11.010 DOI |
5 | Bhartiya D, James K. Very small embryonic-like stem cells (VSELs) in adult mouse uterine perimetrium and myometrium. J Ovarian Res 2017;10:29. https://doi.org/10.1186/s13048-017-0324-5 DOI |
6 | Tesfaye D, Gebremedhn S, Salilew-Wondim D, et al. MicroRNAs: tiny molecules with a significant role in mammalian follicular and oocyte development. Reproduction 2018;155:R121-35. https://doi.org/10.1530/REP-17-0428 DOI |
7 | Grosshans H, Johnson T, Reinert KL, Gerstein M, Slack FJ. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev Cell 2005;8:321-30. https://doi.org/10.1016/j. devcel.2004.12.019 DOI |
8 | Tesfaye D, Worku D, Rings F, et al. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol Reprod Dev 2009;76:665-77. https://doi.org/10.1002/mrd.21005 DOI |
9 | Sinha PB, Tesfaye D, Rings F, et al. MicroRNA-130b is involved in bovine granulosa and cumulus cells function, oocyte maturation and blastocyst formation. J Ovarian Res 2017;10:37. https://doi.org/10.1186/s13048-017-0336-1 DOI |
10 | Lei L, Jin SY, Gonzalez G, Behringer RR, Woodruff TK. The regulatory role of Dicer in folliculogenesis in mice. Mol Cell Endocrinol 2010;315:63-73. https://doi.org/10.1016/j.mce.2009.09.021 DOI |
11 | Worku T, Rehman ZU, Talpur HS, et al. MicroRNAs: New insight in modulating follicular atresia: a review. Int J Mol Sci 2017;18:333. https://doi.org/10.3390/ijms18020333 DOI |
12 | Jiao J, Shi B, Wang T, et al. Characterization of long non-coding RNA and messenger RNA profiles in follicular fluid from mature and immature ovarian follicles of healthy women and women with polycystic ovary syndrome. Hum Reprod 2018;33:1735-48. https://doi.org/10.1093/humrep/dey255 DOI |
13 | Wei J, Zhang L, Li J, et al. Microrna-205 promotes cell invasion by repressing tcf21 in human ovarian cancer. J Ovarian Res 2017;10:33-8. https://doi.org/10.1186/s13048-017-0328-1 DOI |
14 | Xiong F, Hu L, Zhang Y, Xiao X, Xiao J. miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting SIRT1. Biol Open 2016;5:367-71. https://doi.org/10.1242/bio.016907 DOI |
15 | Eisenberg I, Nahmias N, Novoselsky Persky M, et al. Elevated circulating micro-ribonucleic acid (miRNA)-200b and miRNA-429 levels in anovulatory women. Fertil Ssteril 2017;107:269-75. https://doi.org/10.1016/j.fertnstert.2016.10.003 DOI |
16 | Rios C, Warren D, Olson B, Abbott AL. Functional analysis of microRNA pathway genes in the somatic gonad and germ cells during ovulation in C. elegans. Dev Biol 2017;426:115-25. https://doi.org/10.1016/j.ydbio.2017.04.007 DOI |
17 | Tu F, Pan ZX, Yao Y, et al. miR-34a targets the inhibin beta B gene, promoting granulosa cell apoptosis in the porcine ovary. Genet Mol Res GMR. 2014;13:2504-12. https://doi.org/10.4238/2014.January.14.6 DOI |
18 | Atwood CS, Vadakkadath Meethal S. The spatiotemporal hormonal orchestration of human folliculogenesis, early embryogenesis and blastocyst implantation. Mol Cell Endocrinol 2016;430:33-48. https://doi.org/10.1016/j.mce.2016.03.039 DOI |
19 | Liu J, Li X, Yao Y, Li Q, Pan Z, Li Q. miR-1275 controls granulosa cell apoptosis and estradiol synthesis by impairing LRH-1/CYP19A1 axis. Biochim Biophys Acta Gene Regul Mech 2018;1861:246-57. https://doi.org/10.1016/j.bbagrm. 2018.01.009 DOI |
20 | Ikeda S, Imai H, Yamada M. Apoptosis in cumulus cells during in vitro maturation of bovine cumulus-enclosed oocytes. Reproduction 2003;125:369-76. DOI |
21 | Andrei D, Nagy RA, van Montfoort A, et al. Differential miRNA expression profiles in cumulus and mural granulosa cells from human pre-ovulatory follicles. MicroRNA (Shariqah, United Arab Emirates). 2019;8:61-7. https://doi.org/10.2174/2211536607666180912152618 |
22 | Chang HM, Qiao J, Leung PC. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update 2016;23:1-18. https://doi.org/10.1093/humupd/dmw039 DOI |
23 | Suh YS, Bhat S, Hong SH, et al. Genome-wide microRNA screening reveals that the evolutionary conserved miR-9a regulates body growth by targeting sNPFR1/NPYR. 2015;6: 7693. https://doi.org/10.1038/ncomms8693 DOI |
24 | Zhang B, Chen L, Feng G, et al. MicroRNA mediating networks in granulosa cells associated with ovarian follicular development. BioMed Res Int 2017;2017:4585213. https://doi.org/10.1155/2017/4585213 |
25 | Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008;30:460-71. https://doi.org/10.1016/j.molcel.2008.05.001 DOI |
26 | Yan G, Zhang L, Fang T, et al. MicroRNA-145 suppresses mouse granulosa cell proliferation by targeting activin receptor IB. FEBS Lett 2012;586:3263-70. https://doi.org/10.1016/j.febslet.2012.06.048 DOI |
27 | Donadeu FX, Mohammed BT, Ioannidis J. A miRNA target network putatively involved in follicular atresia. Domest Anim Endocrinol 2017;58:76-83. https://doi.org/10.1016/j.domani end.2016.08.002 DOI |
28 | Yang X, Zhou Y, Peng S, et al. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction 2012;144:235-44. https://doi.org/10.1530/REP-11-0371 DOI |
29 | Nie M, Yu S, Peng S, Fang Y, Wang H, Yang X. miR-23a and miR-27a promote human granulosa cell apoptosis by targeting SMAD5. Biol Reprod 2015;93:98. https://doi.org/10.1095/biolreprod.115.130690 DOI |
30 | Huang X, Liu C, Hao C, et al. Identification of altered microRNAs and mRNAs in the cumulus cells of PCOS patients: miRNA-509-3p promotes oestradiol secretion by targeting MAP3K8. Reproduction 2016;151:643-55. https://doi.org/10.1530/REP-16-0071 DOI |
31 | O'Doherty AM, O'Brien YM, Browne JA, Wingfield M, O'Shea LC. Expression of granulosa cell microRNAs, AVEN and ATRX are associated with human blastocyst development. Mol Reprod Dev 2018;85:836-48. https://doi.org/10.1002/mrd.22990 DOI |
32 | Lee J, Park H, Eom J, Kang SG. MicroRNA-mediated regulation of the development and functions of follicular helper T cells. Immune Netw 2018;18:e7. https://doi.org/10.4110/in.2018.18.e7 DOI |
33 | Wigglesworth K, Lee KB, Emori C, Sugiura K, Eppig JJ. Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles. Biol Reprod 2015;92:23. https://doi.org/10.1095/biolreprod.114.121756 DOI |
34 | Zhou J, Lei B, Li H, et al. MicroRNA-144 is regulated by CP2 and decreases COX-2 expression and PGE2 production in mouse ovarian granulosa cells. Cell Death Disease 2017;8:e2597. https://doi.org/10.1038/cddis.2017.24 DOI |
35 | Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33. https://doi.org/10.1016/j.cell.2009.01.002 DOI |
36 | Li D, Xu D, Xu Y, et al. MicroRNA-141-3p targets DAPK1 and inhibits apoptosis in rat ovarian granulosa cells. Cell Biochem Funct 2017;35:197-201. https://doi.org/10.1002/cbf.3248 DOI |
37 | Liu J, Du X, Zhou J, Pan Z, Liu H, Li Q. MicroRNA-26b functions as a proapoptotic factor in porcine follicular Granulosa cells by targeting Sma-and Mad-related protein 4. Biol Reprod 2014;91:146. https://doi.org/10.1095/biolreprod.114.122788 DOI |
38 | Yao YL, Niu JQ, Sizhu SL, et al. microRNA-125b regulates apoptosis by targeting bone morphogenetic protein receptor 1B in yak granulosa cells. DNA Cell Biol 2018;37:878-87. http://doi.org/10.1089/dna.2018.4354 DOI |
39 | Lockhart J, Canfield J, Mong EF, VanWye J, Totary-Jain H. Nucleotide modification alters microRNA-dependent silencing of microRNA switches. Mol Ther Nucleic Acids 2019;14:339-50. https://doi.org/10.1016/j.omtn.2018.12.007 DOI |
40 | Mohr AM, Mott JL. Overview of microRNA biology. Semin Liver Dis 2015;35:3-11. https://doi.org/10.1055/s-0034-1397344 DOI |
41 | Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP. Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 2010;38:789-802. https://doi.org/10.1016/j.molcel.2010.06.005 DOI |
42 | Carletti MZ, Fiedler SD, Christenson LK. MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biol Reprod 2010;83:286-95. https://doi.org/10.1095/biolreprod.109.081448 DOI |
43 | Cao C, Ding Y, Kong X, et al. Reproductive role of miRNA in the hypothalamic-pituitary axis. Mol Cell Neurosci 2018;88:130-7. https://doi.org/10.1016/j.mcn.2018.01.008 DOI |
44 | Sun XF, Li YP, Pan B. Molecular regulation of miR-378 on the development of mouse follicle and the maturation of oocyte in vivo. Cell Cycle (Georgetown, Tex). 2018;17:2230-42. https://doi.org/10.1080/15384101.2018.1520557 DOI |
45 | Naji M, Aleyasin A, Nekoonam S, Arefian E, Mahdian R. Differential Expression of miR-93 and miR-21 in granulosa cells and follicular fluid of polycystic ovary syndrome associating with different phenotypes. Sci Rep 2017;7:14671. https://doi.org/10.1038/s41598-017-13250-1 DOI |
46 | Han X, Xue R, Yuan HJ, et al. MicroRNA-21 plays a pivotal role in the oocyte-secreted factor-induced suppression of cumulus cell apoptosis. Biol Reprod 2017;96:1167-80. https://doi.org/10.1093/biolre/iox044 DOI |
47 | Fu X, He Y, Wang X, et al. Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis. Stem Cell Res Therapy 2017;8:187. https://doi.org/10.1186/s13287-017- 0641-z DOI |
48 | Tscherner A, Brown AC, Stalker L, et al. STAT3 signaling stimulates miR-21 expression in bovine cumulus cells during in vitro oocyte maturation. Sci Rep 2018;8:11527. https://doi.org/10.1038/s41598-018-29874-w DOI |
49 | Li X, Jin Y, Mu Z, Chen W, Jiang S. MicroRNA146a5p enhances cisplatininduced apoptosis in ovarian cancer cells by targeting multiple antiapoptotic genes. Int J Oncol 2017;51:327-35. https://doi.org/10.3892/ijo.2017.4023 DOI |
50 | Chen X, Xie M, Liu D, Shi K. Downregulation of microRNA- 146a inhibits ovarian granulosa cell apoptosis by simultaneously targeting interleukin-1 receptor-associated kinase and tumor necrosis factor receptor-associated factor 6. Mol Med Rep 2015;12:5155-62. https://doi.org/10.3892/mmr.2015. 4036 DOI |
51 | Du X, Li Q, Pan Z, Li Q. Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells. Reproduction 2016;152:161-9. https://doi.org/10.1530/REP-15-0517 DOI |
52 | Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011;39(Suppl 1):D152-7. https://doi.org/10.1093/nar/gkq1027 DOI |
53 | Weixi X, Lin LY, Lili X, et al. Circulatory microRNA 23a and microRNA 23b and polycystic ovary syndrome (PCOS): the effects of body mass index and sex hormones in an Eastern Han Chinese population. J Ovarian Res 2017;10:10. https://doi.org/10.1186/s13048-016-0298-8 DOI |
54 | Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001;294:858-62. https://doi.org/10.1126/science.1065062 DOI |
55 | Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004;23:4051-60. https://doi.org/10.1038/sj.emboj.7600385 DOI |
56 | Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008;9:102-14. https://doi.org/10.1038/nrg2290 DOI |
57 | Yates LA, Norbury CJ, Gilbert RJC. The long and short of microRNA. Cell 2013;153:516-9. https://doi.org/10.1016/j.cell.2013.04.003 DOI |
58 | Sirotkin AV, Laukova M, Ovcharenko D, Brenaut P, Mlyncek M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 2010;223:49-56. https://doi.org/10.1002/jcp.21999 DOI |
59 | Luo M, Li L, Xiao C, Sun Y, Wang GL. Heat stress impairs mice granulosa cell function by diminishing steroids production and inducing apoptosis. Mol Cell Biochem 2016;412:81-90. https://doi.org/10.1007/s11010-015-2610-0 DOI |
60 | Aherne ST, Lao NT. Manipulating miRNA expression to uncover hidden functions. Methods Mol Biol (Clifton, NJ). 2017;1509:151-60. https://doi.org/10.1007/978-1-4939-6524- 3_14 DOI |
61 | Dai A, Sun H, Fang T, et al. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett 2013;587:2474-82. https://doi.org/10.1016/j.febslet.2013.06.023 DOI |
62 | Kitahara Y, Nakamura K, Kogure K, Minegishi T. Role of microRNA-136-3p on the expression of luteinizing hormone-human chorionic gonadotropin receptor mRNA in rat ovaries. Biol Reprod 2013;89:114. https://doi.org/10.1095/biolreprod.113.109207 DOI |
63 | Yang S, Wang S, Luo A, et al. Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary. Biol Reprod 2013;89:126. https://doi.org/10.1095/biolreprod.113.107730 DOI |
64 | Donadeu FX, Schauer SN, Sontakke SD. Involvement of miRNAs in ovarian follicular and luteal development. J Endocrinol 2012;215:323-34. https://doi.org/10.1530/joe-12-0252 DOI |
65 | Xu S, Linher-Melville K, Yang BB, Wu D, Li J. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology 2011;152:3941-51. https://doi.org/10.1210/en.2011-1147 DOI |
66 | Zhou J, Liu J, Pan Z, et al. The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-beta type 1 receptor. Mol Cell Endocrinol 2015;409:103-12. https://doi.org/10.1016/j.mce.2015.03.012 DOI |
67 | Aherne ST, Lao NT. Manipulating miRNA expression to uncover hidden functions. In: Rani S, editor. MicroRNA profiling. Methods in Molecular Biology. New York, NY, USA: Humana Press; 2017. vol 1509 pp. 151-60. https://doi.org/10.1007/978-1-4939-6524-3_14 |
68 | Zhou J, Yao W, Liu K, et al. MicroRNA let-7g regulates mouse granulosa cell autophagy by targeting insulin-like growth factor 1 receptor. Int J Biochem Cell Biol 2016;78:130-40. https://doi.org/10.1016/j.biocel.2016.07.008 DOI |
69 | Su JL, Chen PS, Johansson G, Kuo ML. Function and regulation of let-7 family microRNAs. MicroRNA 2012;1:34-9. DOI |
70 | Cao R, Wu WJ, Zhou XL, Xiao P, Wang Y, Liu HL. Expression and preliminary functional profiling of the let-7 family during porcine ovary follicle atresia. Mol Cells 2015;38:304-11. https://doi.org/10.14348/molcells.2015.2122 DOI |
71 | Cao R, Wu W, Zhou X, et al. Let-7g induces granulosa cell apoptosis by targeting MAP3K1 in the porcine ovary. Int J Biochem Cell Biol 2015;68:148-57. https://doi.org/10.1016/j.biocel.2015.08.011 DOI |
72 | Gebremedhn S, Salilew-Wondim D, Ahmad I, et al. MicroRNA expression profile in bovine granulosa cells of preovulatory dominant and subordinate follicles during the late follicular phase of the estrous cycle. PloS one 2015;10:e0125912. https://doi.org/10.1371/journal.pone.0125912 DOI |
73 | Zhang J, Xu Y, Liu H, Pan Z. MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis. Reprod Biol Endocrinol 2019;17:9. https://doi.org/10.1186/s12958-018-0450-y DOI |
74 | Shippy DC, Bearson BL, Cai G, Brunelle BW, Kich JD, Bearson SMD. Modulation of porcine microRNAs associated with apoptosis and NF-kappaB signaling pathways in response to Salmonella enterica serovar Typhimurium. Gene 2018;676:290-7. https://doi.org/10.1016/j.gene.2018.08.044 DOI |
75 | Gebremedhn S, Salilew-Wondim D, Hoelker M, et al. MicroRNA-183-96-182 cluster regulates bovine granulosa cell proliferation and cell cycle transition by coordinately targeting FOXO1. Biol Reprod 2016;94:127. https://doi.org/10.1095/biolreprod.115.137539 |
76 | Herndon MK, Law NC, Donaubauer EM, Kyriss B, Hunzicker-Dunn M. Forkhead box O member FOXO1 regulates the majority of follicle-stimulating hormone responsive genes in ovarian granulosa cells. Mol Cell Endocrinol 2016;434:116-26. DOI |
77 | Askandar Iqbal M, Arora S, Prakasam G, Calin GA, Syed MA. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med 2019;70:3-20. https://doi.org/10.1016/j.mam.2018.07.003 DOI |
78 | Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008;133:217-22. https://doi.org/10.1016/j.cell.2008.04.001 DOI |
79 | Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 2016;17:272-83. https://doi.org/10.1038/nrg.2016.20 DOI |
80 | Silveira Zavalhia L, Weber Medeiros A, Oliveira Silva A, Vial Roehe A. Do FHIT gene alterations play a role in human solid tumors? 2018;14:e214-23. https://doi.org/10.1111/ajco.12868 DOI |
81 | Cha HJ, An SK, Kim TJ, Lee JH. Alteration of microRNA profiling in sphere-cultured ovarian carcinoma cells. Oncol Lett 2018;16:2016-22. https://doi.org/10.3892/ol.2018.8818 DOI |
82 | Richards JS. From follicular development and ovulation to ovarian cancers: an unexpected journey. Vitam Horm 2018;107:453-72. https://doi.org/10.1016/bs.vh.2018.01.019 DOI |
83 | Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019;234:5451-65. https://doi.org/10.1002/jcp.27486 DOI |
84 | Inoue K, Hirose M, Inoue H, et al. The rodent-specific microRNA cluster within the Sfmbt2 gene is imprinted and essential for placental development. Cell Rep 2017;19:949-56. https://doi.org/10.1016/j.celrep.2017.04.018 DOI |
85 | Schauer SN, Sontakke SD, Watson ED, Esteves CL, Donadeu FX. Involvement of miRNAs in equine follicle development. Reproduction 2013;146:273-82. https://doi.org/10.1530/REP-13-0107 DOI |
86 | Battaglia R, Vento ME, Ragusa M, et al. MicroRNAs are stored in human MII oocyte and their expression profile changes in reproductive aging. Biol Reprod 2016;95:131. https://doi.org/10.1095/biolreprod.116.142711 DOI |
87 | Li X, Zhuang X, Xu T, et al. Expression analysis of microRNAs and mRNAs in ovarian granulosa cells after microcystin-LR exposure. Toxicon 2017;129:11-9. https://doi.org/10.1016/j. toxicon.2017.01.022 DOI |
88 | Wang J, Xu B, Tian GG, Sun T, Wu J. Ablation of the MiR-17-92 MicroRNA cluster in germ cells causes subfertility in female mice. Cell Physiol Biochem 2018;45:491-504. https://doi.org/10.1159/000487028 DOI |
89 | Andreas E, Hoelker M, Neuhoff C, et al. MicroRNA 17-92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN and BMPR2 genes. Cell Tissue Res 2016;366:219-30. https://doi.org/10.1007/s00441-016-2425-7 DOI |
90 | Li P, Sheng C, Huang L, et al. MiR-183/-96/-182 cluster is up-regulated in most breast cancers and increases cell proliferation and migration. Breast Cancer Res 2014;16:473. https://doi.org/10.1186/s13058-014-0473-z DOI |