Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.7.151

microRNA biomarkers in cystic diseases  

Woo, Yu Mi (Department of Biological Science, Sookmyung Women's University)
Park, Jong Hoon (Department of Biological Science, Sookmyung Women's University)
Publication Information
BMB Reports / v.46, no.7, 2013 , pp. 338-345 More about this Journal
Abstract
microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by targeting the 3'-untranslated region of multiple target genes. Pathogenesis results from defects in several gene sets; therefore, disease progression could be prevented using miRNAs targeting multiple genes. Moreover, recent studies suggest that miRNAs reflect the stage of the specific disease, such as carcinogenesis. Cystic diseases, including polycystic kidney disease, polycystic liver disease, pancreatic cystic disease, and ovarian cystic disease, have common processes of cyst formation in the specific organ. Specifically, epithelial cells initiate abnormal cell proliferation and apoptosis as a result of alterations to key genes. Cysts are caused by fluid accumulation in the lumen. However, the molecular mechanisms underlying cyst formation and progression remain unclear. This review aims to introduce the key miRNAs related to cyst formation, and we suggest that miRNAs could be useful biomarkers and potential therapeutic targets in several cystic diseases.
Keywords
Biomarker; Cyst formation; Cystic disease; microRNA;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sirotkin, A. V., Ovcharenko, D., Grossmann, R., Laukova, M. and Mlyncek, M. (2009) Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J. Cell. Physiol. 219, 415-420.   DOI   ScienceOn
2 Toloubeydokhti, T., Bukulmez, O. and Chegini, N. (2008) Potential regulatory functions of microRNAs in the ovary. Semin. Reprod. Med. 26, 469-478.   DOI   ScienceOn
3 Hossain, M. M., Cao, M., Wang, Q., Kim, J. Y., Schellander, K., Tesfaye, D. and Tsang, B. K. (2013) Altered expression of miRNAs in a dihydrotestosterone-induced rat PCOS model. J. Ovarian Res. 6, 36.   DOI   ScienceOn
4 Sang, Q., Yao, Z., Wang, H., Feng, R., Zhao, X., Xing, Q., Jin, L., He, L., Wu, L. and Wang, L. (2013) Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J. Clin. Endocrinol. Metab. 98, 3068-3079.   DOI   ScienceOn
5 He, A., Zhu, L., Gupta, N., Chang, Y. and Fang, F. (2007) Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol. Endocrinol. 21, 2785-2794.   DOI   ScienceOn
6 Lee, S. H., Ichii, O., Otsuka, S., Hashimoto, Y. and Kon, Y. (2010) Quantitative trait locus analysis of ovarian cysts derived from rete ovarii in MRL/MpJ mice. Mamm. Genome 21, 162-171.   DOI
7 Boehlke, C., Kotsis, F., Patel, V., Braeg, S., Voelker, H., Bredt, S., Beyer, T., Janusch, H., Hamann, C., Godel, M., Muller, K., Herbst, M., Hornung, M., Doerken, M., Kottgen, M., Nitschke, R., Igarashi, P., Walz, G. and Kuehn, E. W. (2010) Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat. Cell Biol. 12, 1115-1122.   DOI   ScienceOn
8 Ryu, J. K., Matthaei, H., Dal Molin, M., Hong, S. M., Canto, M. I., Schulick, R. D., Wolfgang, C., Goggins, M. G., Hruban, R. H., Cope, L. and Maitra, A. (2011) Elevated microRNA miR-21 levels in pancreatic cyst fluid are predictive of mucinous precursor lesions of ductal adenocarcinoma. Pancreatology 11, 343-350.   DOI   ScienceOn
9 Farrell, J. J., Toste, P., Wu, N., Li, L., Wong, J., Malkhassian, D., Tran, L. M., Wu, X., Li, X., Dawson, D., Wu, H. and Donahue, T. R. (2013) Endoscopically acquired pancreatic cyst fluid MicroRNA 21 and 221 are associated with invasive cancer. Am. J. Gastroenterol. [Epub ahead of print].
10 Cano, D. A., Murcia, N. S., Pazour, G. J. and Hebrok, M. (2004) Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization. Development 131, 3457-3467.   DOI   ScienceOn
11 Cano, D. A., Sekine, S. and Hebrok, M. (2006) Primary cilia deletion in pancreatic epithelial cells results in cyst formation and pancreatitis. Gastroenterology 131, 1856-1869.   DOI   ScienceOn
12 Pierreux, C. E., Poll, A. V., Kemp, C. R., Clotman, F., Maestro, M. A., Cordi, S., Ferrer, J., Leyns, L., Rousseau, G. G. and Lemaigre, F. P. (2006) The transcription factor hepatocyte nuclear factor-6 controls the development of pancreatic ducts in the mouse. Gastroenterology 130, 532-541.   DOI   ScienceOn
13 Simion, A., Laudadio, I., Prevot, P. P., Raynaud, P., Lemaigre, F. P. and Jacquemin, P. (2010) MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2. Biochem. Biophys. Res. Commun. 391, 293-298.   DOI   ScienceOn
14 Onur, M. R., Bakal, U., Kocakoc, E., Tartar, T. and Kazez, A. (2013) Cystic abdominal masses in children: a pictorial essay. Clin. Imaging. 37, 18-27.   DOI   ScienceOn
15 Legro, R. S., Barnhart, H. X., Schlaff, W. D., Carr, B. R., Diamond, M. P., Carson, S. A., Steinkampf, M. P., Coutifaris, C., McGovern, P. G., Cataldo, N. A., Gosman, G. G., Nestler, J. E., Giudice, L. C., Leppert, P. C. and Myers, E. R. (2007) Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N. Engl. J. Med. 356, 551-566.   DOI   ScienceOn
16 Fabris, L., Cadamuro, M., Fiorotto, R., Roskams, T., Spirli, C., Melero, S., Sonzogni, A., Joplin, R. E., Okolicsanyi, L. and Strazzabosco, M. (2006) Effects of angiogenic factor overexpression by human and rodent cholangiocytes in polycystic liver diseases. Hepatology 43, 1001-1012.   DOI   ScienceOn
17 Liang, M., Liu, Y., Mladinov, D., Cowley, A. W. Jr., Trivedi, H., Fang, Y., Xu, X., Ding, X. and Tian, Z. (2009) MicroRNA: a new frontier in kidney and blood pressure research. Am. J. Physiol. Renal Physiol. 297, F553-558.   DOI   ScienceOn
18 Bae, K. T., Zhu, F., Chapman, A. B., Torres, V. E., Grantham, J. J., Guay-Woodford, L. M., Baumgarten, D. A., King, B. F. Jr., Wetzel, L. H., Kenney, P. J., Brummer, M. E., Bennett, W. M., Klahr, S., Meyers, C. M., Zhang, X., Thompson, P. A. and Miller, J. P. (2006) Magnetic resonance imaging evaluation of hepatic cysts in early autosomal-dominant polycystic kidney disease: the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease cohort. Clin. J. Am. Soc. Nephrol. 1, 64-69.
19 Waanders, E., te Morsche, R. H., de Man, R. A., Jansen, J. B. and Drenth, J. P. (2006) Extensive mutational analysis of PRKCSH and SEC63 broadens the spectrum of polycystic liver disease. Hum. Mutat. 27, 830.
20 Banales, J. M., Munoz-Garrido, P. and Bujanda, L. (2013) Somatic second-hit mutations leads to polycystic liver diseases. World J. Gastroenterol. 19, 141-143.   DOI   ScienceOn
21 Alvaro, D., Gigliozzi, A. and Attili, A. F. (2000) Regulation and deregulation of cholangiocyte proliferation. J. Hepatol. 33, 333-340.   DOI   ScienceOn
22 Qian, Q., Du, H., King, B. F., Kumar, S., Dean, P. G., Cosio, F. G. and Torres, V. E. (2008) Sirolimus reduces polycystic liver volume in ADPKD patients. J. Am. Soc. Nephrol. 19, 631-638.   DOI   ScienceOn
23 Arnould, T., Kim, E., Tsiokas, L., Jochimsen, F., Gruning, W., Chang, J. D. and Walz, G. (1998) The polycystic kidney disease 1 gene product mediates protein kinase C alpha-dependent and c-Jun N-terminal kinase-dependent activation of the transcription factor AP-1. J. Biol. Chem. 273, 6013-6018.   DOI
24 Park, W. G. (2011) Screening for pancreatic cancer: what can cyst fluid analysis tell us? F1000 Med. Rep. 3, 3.
25 Patel, V., Williams, D., Hajarnis, S., Hunter, R., Pontoglio, M., Somlo, S. and Igarashi, P. (2013) miR-17-92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc. Natl. Acad. Sci. U. S. A. 110, 10765-10770.   DOI   ScienceOn
26 Tan, Y. C., Blumenfeld, J. and Rennert, H. (2011) Autosomal dominant polycystic kidney disease: genetics, mutations and microRNAs. Biochim. Biophys. Acta 1812, 1202-1212.   DOI   ScienceOn
27 Sun, H., Li, Q. W., Lv, X. Y., Ai, J. Z., Yang, Q. T., Duan, J. J., Bian, G. H., Xiao, Y., Wang, Y. D., Zhang, Z., Liu, Y. H., Tan, R. Z., Yang, Y., Wei, Y. Q. and Zhou, Q. (2010) MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation. Mol. Biol. Rep. 37, 2951-2958.   DOI
28 Tran, U., Zakin, L., Schweickert, A., Agrawal, R., Doger, R., Blum, M., De Robertis, E. M. and Wessely, O. (2010) The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 137, 1107-1116.   DOI   ScienceOn
29 Pandey, P., Qin, S., Ho, J., Zhou, J. and Kreidberg, J. A. (2011) Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease. BMC Syst. Biol. 5, 56.   DOI   ScienceOn
30 Attanasio, M., Uhlenhaut, N. H., Sousa, V. H., O'Toole, J. F., Otto, E., Anlag, K., Klugmann, C., Treier, A. C., Helou, J., Sayer, J. A., Seelow, D., Nurnberg, G., Becker, C., Chudley, A. E., Nurnberg, P., Hildebrandt, F. and Treier, M. (2007) Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. Nat. Genet. 39, 1018-1024.   DOI   ScienceOn
31 Dweep, H., Sticht, C., Pandey, P. and Gretz, N. (2011) miRWalk--database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. J. Biomed. Inform. 44, 839-847.   DOI   ScienceOn
32 Nicolau, C., Torra, R., Badenas, C., Vilana, R., Bianchi, L., Gilabert, R., Darnell, A. and Bru, C. (1999) Autosomal dominant polycystic kidney disease types 1 and 2: assessment of US sensitivity for diagnosis. Radiology 213, 273-276.   DOI   ScienceOn
33 Pastorelli, L. M., Wells, S., Fray, M., Smith, A., Hough, T., Harfe, B. D., McManus, M. T., Smith, L., Woolf, A. S., Cheeseman, M. and Greenfield, A. (2009) Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mamm. Genome 20, 140-151.   DOI   ScienceOn
34 Matthaei, H., Wylie, D., Lloyd, M. B., Dal Molin, M., Kemppainen, J., Mayo, S. C., Wolfgang, C. L., Schulick, R. D., Langfield, L., Andruss, B. F., Adai, A. T., Hruban, R. H., Szafranska-Schwarzbach, A. E. and Maitra, A. (2012) miRNA biomarkers in cyst fluid augment the diagnosis and management of pancreatic cysts. Clin. Cancer Res. 18, 4713-4724.   DOI
35 Wittmann, J. and Jack, H. M. (2010) Serum microRNAs as powerful cancer biomarkers. Biochim. Biophys. Acta 1806, 200-207.
36 Kaimori, J. Y. and Germino, G. G. (2008) ARPKD and ADPKD: first cousins or more distant relatives? J. Am. Soc. Nephrol. 19, 416-418.   DOI   ScienceOn
37 Nicolau, C., Torra, R., Badenas, C., Perez, L., Oliver, J. A., Darnell, A. and Bru, C. (2000) Sonographic pattern of recessive polycystic kidney disease in young adults. Differences from the dominant form. Nephrol. Dial. Transplant. 15, 1373-1378.   DOI   ScienceOn
38 Brasier, J. L. and Henske, E. P. (1997) Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J. Clin. Invest. 99, 194-199.   DOI   ScienceOn
39 Ong, A. C., Harris, P. C., Davies, D. R., Pritchard, L., Rossetti, S., Biddolph, S., Vaux, D. J., Migone, N. and Ward, C. J. (1999) Polycystin-1 expression in PKD1, early- onset PKD1, and TSC2/PKD1 cystic tissue. Kidney Int. 56, 1324-1333.   DOI   ScienceOn
40 Wang, E., Hsieh-Li, H. M., Chiou, Y. Y., Chien, Y. L., Ho, H. H., Chin, H. J., Wang, C. K., Liang, S. C. and Jiang, S. T. (2010) Progressive renal distortion by multiple cysts in transgenic mice expressing artificial microRNAs against Pkd1. J. Pathol. 222, 238-248.   DOI   ScienceOn
41 Patel, V., Hajarnis, S., Williams, D., Hunter, R., Huynh, D. and Igarashi, P. (2012) MicroRNAs regulate renal tubule maturation through modulation of Pkd1. J. Am. Soc. Nephrol. 23, 1941-1948.   DOI   ScienceOn
42 Dweep, H., Sticht, C., Kharkar, A., Pandey, P. and Gretz, N. (2013) Parallel analysis of mRNA and microRNA microarray profiles to explore functional regulatory patterns in polycystic kidney disease: using PKD/Mhm rat model. PLoS One 8, e53780.   DOI
43 Chen, X. M. (2009) MicroRNA signatures in liver diseases. World J. Gastroenterol. 15, 1665-1672.   DOI   ScienceOn
44 Baskerville, S. and Bartel, D. P. (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241-247.   DOI   ScienceOn
45 Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A. O., Landthaler, M., Lin, C., Socci, N. D., Hermida, L., Fulci, V., Chiaretti, S., Foa, R., Schliwka, J., Fuchs, U., Novosel, A., Muller, R. U., Schermer, B., Bissels, U., Inman, J., Phan, Q., Chien, M., Weir, D. B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H. I., Hornung, V., Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Macino, G., Rogler, C. E., Nagle, J. W., Ju, J., Papavasiliou, F. N., Benzing, T., Lichter, P., Tam, W., Brownstein, M. J., Bosio, A., Borkhardt, A., Russo, J. J., Sander, C., Zavolan, M. and Tuschl, T. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401-1414.   DOI   ScienceOn
46 Pandey, P., Brors, B., Srivastava, P. K., Bott, A., Boehn, S. N., Groene, H. J. and Gretz, N. (2008) Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease. BMC Genomics 9, 624.   DOI   ScienceOn
47 Liu, C. G., Calin, G. A., Meloon, B., Gamliel, N., Sevignani, C., Ferracin, M., Dumitru, C. D., Shimizu, M., Zupo, S., Dono, M., Alder, H., Bullrich, F., Negrini, M. and Croce, C. M. (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl. Acad. Sci. U.S.A. 101, 9740-9744.   DOI   ScienceOn
48 Sun, Y., Koo, S., White, N., Peralta, E., Esau, C., Dean, N. M. and Perera, R. J. (2004) Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 32, e188.   DOI   ScienceOn
49 Bhatt, K., Mi, Q. S. and Dong, Z. (2011) microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am. J. Physiol. Renal Physiol. 300, F602-610.   DOI   ScienceOn
50 Etheridge, A., Lee, I., Hood, L., Galas, D. and Wang, K. (2011) Extracellular microRNA: a new source of biomarkers. Mutat. Res. 717, 85-90.   DOI   ScienceOn
51 Gilad, S., Meiri, E., Yogev, Y., Benjamin, S., Lebanony, D., Yerushalmi, N., Benjamin, H., Kushnir, M., Cholakh, H., Melamed, N., Bentwich, Z., Hod, M., Goren, Y. and Chajut, A. (2008) Serum microRNAs are promising novel biomarkers. PLoS One 3, e3148.   DOI   ScienceOn
52 Nahm, A. M., Henriquez, D. E. and Ritz, E. (2002) Renal cystic disease (ADPKD and ARPKD). Nephrol. Dial. Transplant. 17, 311-314.   DOI   ScienceOn
53 Nagao, S., Kugita, M., Yoshihara, D. and Yamaguchi, T. (2012) Animal models for human polycystic kidney disease. Exp. Anim. 61, 477-488.   DOI
54 Kim, S., Zaghloul, N. A., Bubenshchikova, E., Oh, E. C., Rankin, S., Katsanis, N., Obara, T. and Tsiokas, L. (2011) Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat. Cell Biol. 13, 351-360.   DOI   ScienceOn
55 Lee, S. O., Masyuk, T., Splinter, P., Banales, J. M., Masyuk, A., Stroope, A. and Larusso, N. (2008) MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J. Clin. Invest. 118, 3714-3724.   DOI   ScienceOn
56 Dell, K. M. R. and Avner, E. D. (1993) Polycystic kidney disease, autosomal recessive; in GeneReviews. Pagon, R. A., Adam, M. P., Bird, T. D., Dolan, C. R., Fong, C. T. and Stephens, K. (eds.), Seattle, WA, USA.
57 Ko, J. Y. and Park, J. H. (2013) Mouse models of polycystic kidney disease induced by defects of ciliary proteins. BMB Rep. 46, 73-79.   과학기술학회마을   DOI   ScienceOn
58 Lancaster, M. A., Schroth, J. and Gleeson, J. G. (2011) Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat. Cell Biol. 13, 700-707.   DOI
59 Belibi, F., Ravichandran, K., Zafar, I., He, Z. and Edelstein, C. L. (2011) mTORC1/2 and rapamycin in female Han: SPRD rats with polycystic kidney disease. Am. J. Physiol. Renal Physiol. 300, F236-244.   DOI   ScienceOn
60 Yamaguchi, T., Wallace, D. P., Magenheimer, B. S., Hempson, S. J., Grantham, J. J. and Calvet, J. P. (2004) Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J. Biol. Chem. 279, 40419-40430.   DOI   ScienceOn
61 Slack, F. J. and Weidhaas, J. B. (2008) MicroRNA in cancer prognosis. N. Engl. J. Med. 359, 2720-2722.   DOI   ScienceOn
62 Kim, V. N., Han, J. and Siomi, M. C. (2009) Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126-139.   DOI   ScienceOn
63 Grimson, A., Farh, K. K., Johnston, W. K., Garrett-Engele, P., Lim, L. P. and Bartel, D. P. (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91-105.   DOI   ScienceOn
64 Waanders, E., Venselaar, H., te Morsche, R. H., de Koning, D. B., Kamath, P. S., Torres, V. E., Somlo, S. and Drenth, J. P. (2010) Secondary and tertiary structure modeling reveals effects of novel mutations in polycystic liver disease genes PRKCSH and SEC63. Clin. Genet. 78, 47-56.   DOI   ScienceOn
65 LeSage, G., Glaser, S. and Alpini, G. (2001) Regulation of cholangiocyte proliferation. Liver 21, 73-80.   DOI   ScienceOn
66 Hu, H. Y., Yan, Z., Xu, Y., Hu, H., Menzel, C., Zhou, Y. H., Chen, W. and Khaitovich, P. (2009) Sequence features associated with microRNA strand selection in humans and flies. BMC Genomics 10, 413.   DOI   ScienceOn
67 Yang, J. S. and Lai, E. C. (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 43, 892-903.   DOI   ScienceOn
68 Kim, V. N. (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376-385.   DOI   ScienceOn
69 Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R. and Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58-63.   DOI   ScienceOn
70 Lewis, B. P., Burge, C. B. and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20.   DOI   ScienceOn
71 Lindow, M. and Gorodkin, J. (2007) Principles and limitations of computational microRNA gene and target finding. DNA Cell Biol. 26, 339-351.   DOI   ScienceOn
72 Hu, Z. (2009) Insight into microRNA regulation by analyzing the characteristics of their targets in humans. BMC Genomics 10, 594.   DOI   ScienceOn
73 Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.   DOI   ScienceOn
74 Lopez-Serra, P. and Esteller, M. (2012) DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene 31, 1609-1622.   DOI   ScienceOn
75 Wallace, D. P. (2011) Cyclic AMP-mediated cyst expansion. Biochim. Biophys. Acta. 1812, 1291-1300.   DOI   ScienceOn
76 Fernandez-del Castillo, C., Targarona, J., Thayer, S. P., Rattner, D. W., Brugge, W. R. and Warshaw, A. L. (2003) Incidental pancreatic cysts: clinicopathologic characteristics and comparison with symptomatic patients. Arch. Surg. 138, 427-423.   DOI   ScienceOn
77 Ibraghimov-Beskrovnaya, O. and Bukanov, N. (2008) Polycystic kidney diseases: from molecular discoveries to targeted therapeutic strategies. Cell. Mol. Life Sci. 65, 605-619.   DOI
78 Janssen, M. J., Waanders, E., Te Morsche, R. H., Xing, R., Dijkman, H. B., Woudenberg, J. and Drenth, J. P. (2011) Secondary, somatic mutations might promote cyst formation in patients with autosomal dominant polycystic liver disease. Gastroenterology 141, 2056-2063, e2052.   DOI   ScienceOn
79 Fedeles, S. V., Tian, X., Gallagher, A. R., Mitobe, M., Nishio, S., Lee, S. H., Cai, Y., Geng, L., Crews, C. M. and Somlo, S. (2011) A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat. Genet. 43, 639-647.   DOI   ScienceOn
80 Abdul-Majeed, S. and Nauli, S. M. (2011) Polycystic diseases in visceral organs. Obstet. Gynecol. Int. 2011, 609370.
81 Sirotkin, A. V., Laukova, M., Ovcharenko, D., Brenaut, P. and Mlyncek, M. (2010) Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J. Cell. Physiol. 223, 49-56.
82 Gretz, N., Kranzlin, B., Pey, R., Schieren, G., Bach, J., Obermuller, N., Ceccherini, I., Kloting, I., Rohmeiss, P., Bachmann, S. and Hafner, M. (1996) Rat models of autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 11 (Suppl 6), 46-51.
83 Lee, R. C., Feinbaum, R. L. and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.   DOI   ScienceOn
84 Lee, H. J., Woo, S. K., Kim, J. S. and Suh, S. J. (2000) "Daughter cyst" sign: a sonographic finding of ovarian cyst in neonates, infants, and young children. AJR. Am. J. Roentgenol. 174, 1013-1015.   DOI   ScienceOn
85 Takakura, A., Contrino, L., Zhou, X., Bonventre, J. V., Sun, Y., Humphreys, B. D. and Zhou, J. (2009) Renal injury is a third hit promoting rapid development of adult polycystic kidney disease. Hum. Mol. Genet. 18, 2523-2531.   DOI   ScienceOn
86 Park, E. Y., Woo, Y. M. and Park, J. H. (2011) Polycystic kidney disease and therapeutic approaches. BMB Rep. 44, 359-368.   과학기술학회마을   DOI   ScienceOn