Browse > Article
http://dx.doi.org/10.7314/APJCP.2014.15.17.7015

Role of MicroRNAs in the Warburg Effect and Mitochondrial Metabolism in Cancer  

Jin, Li-Hui (Center for Translational Medicine, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University)
Wei, Chen (Clinical Laboratory, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.15, no.17, 2014 , pp. 7015-7019 More about this Journal
Abstract
Metabolism lies at the heart of cell biology. The metabolism of cancer cells is significantly different from that of their normal counterparts during tumorigenesis and progression. Elevated glucose metabolism is one of the hallmarks of cancer cells, even under aerobic conditions. The Warburg effect not only allows cancer cells to meet their high energy demands and supply biological materials for anabolic processes including nucleotide and lipid synthesis, but it also minimizes reactive oxygen species production in mitochondria, thereby providing a growth advantage for tumors. Indeed, the mitochondria also play a more essential role in tumor development. As information about the numorous microRNAs has emerged, the importance of metabolic phenotypes mediated by microRNAs in cancer is being increasingly emphasized. However, the consequences of dysregulation of Warburg effect and mitochondrial metabolism modulated by microRNAs in tumor initiation and progression are still largely unclear.
Keywords
Cancer; microRNAs; Warburg effect; mitochondria; metabolism;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Anaya-Ruiz M, Cebada J, Delgado-Lopez G, et al (2013). MiR-153 silencing induces apoptosis in the MDA-MB-231 breast cancer cell line. Asian Pac J Cancer Prev, 14, 2983-6.   과학기술학회마을   DOI
2 Bienertova-Vasku J, Sana J, Slaby O (2013). The role of microRNAs in mitochondria in cancer. Cancer Lett, 336, 1-7.   DOI
3 Calin GA, Cimmino A, Fabbri M, et al (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA, 105, 5166-71.   DOI
4 Chen YH, Heneidi S, Lee JM, et al (2013). MiRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes, 62, 2278-86.   DOI
5 Chow TF, Mankaruos M, Scorilas A, et al (2010). The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol, 183, 743-51.   DOI
6 Croce CM (2009). Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet, 10, 704-14.   DOI   ScienceOn
7 Das S, Ferlito M, Kent OA, et al(2012). Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res, 110, 1596-603.   DOI
8 Ebi H, Sato T, Sugito N, et al (2009). Counterbalance between RB inactivation and miR-17-92 overexpression in reactive oxygen species and DNA damage induction in lung cancers. Oncogene, 28, 3371-9.   DOI
9 Eichner LJ, Perry MC, Dufour CR, et al (2010). MiR-378(*) mediates metabolic shift in breast cancer cells via the PGC-1beta/ERRgamma transcriptional pathway. Cell Metab, 12, 352-61.   DOI
10 Ahmad A, Aboukameel A, Kong D, et al (2011). Phosphoglucose isomerase/autocrine motility factor mediates epithelialmesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res, 71, 3400-9.   DOI
11 Anaya-Ruiz M, Bandala C, Perez-Santos JL (2013). MiR-485 acts as a tumor suppressor by inhibiting cell growth and migration in breast carcinoma T47D cells. Asian Pac J Cancer Prev, 14, 3757-60.   과학기술학회마을   DOI
12 Fang R, Xiao T, Fang Z, et al (2012). MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol Chem, 287, 23227-35.   DOI
13 Fei X, Qi M, Wu B, et al (2012). MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression. FEBS Lett, 586, 392-7.   DOI
14 Gao P, Tchernyshyov I, Chang TC, et al (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458, 762-5.   DOI   ScienceOn
15 Garzon R, Calin GA, Croce CM (2009). MicroRNAs in Cancer. Annu Rev Med, 60, 167-79.   DOI   ScienceOn
16 Gatenby RA, Gillies RJ (2004). Why do cancers have high aerobic glycolysis? Nat Rev Cancer, 4, 891-9.   DOI   ScienceOn
17 Hsu PP, Sabatini DM (2008). Cancer cell metabolism: Warburg and beyond. Cell, 134, 703-7.   DOI
18 Gigli I, Maizon DO (2013). MicroRNAs and the mammary gland: A new understanding of gene expression. Genet Mol Biol, 36, 465-74.   DOI
19 Hatziapostolou M, Polytarchou C, Iliopoulos D(2013). miRNAs link metabolic reprogramming to oncogenesis. Trends Endocrinol Metab, 24, 361-73.   DOI
20 Horie T, Ono K, Nishi H, et al (2009). MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun, 389, 315-20.   DOI   ScienceOn
21 Iorio MV, Croce CM (2012). MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med, 4, 143-59.   DOI
22 Jackson AL, Bartz SR, Schelter J, et al (2003). Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol, 21, 635-7.   DOI   ScienceOn
23 Jiang S, Zhang LF, Zhang HW, et al (2012). A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J, 31, 1985-98.   DOI
24 Kefas B, Comeau, L, Erdle N, et al (2010). Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol, 12, 1102-12.   DOI
25 Kinoshita T, Nohata N, Yoshino H, et al (2012). Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in maxillary sinus squamous cell carcinoma. Int J Oncol, 40, 185-93.
26 Latronico MV, Condorelli G (2012). The might of microRNA in mitochondria. Circ Res, 110, 1540-2.   DOI
27 Li SZ, Hu YY, Zhao J, et al (2014). MicroRNA-34a induces apoptosis in the human glioma cell line, A172, through enhanced ROS production and NOX2 expression. Biochem Biophys Res Commun, 444, 6-12.   DOI
28 Li J, Donath S, Li Y, et al (2010). MiR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet, 6, e1000795.   DOI
29 Li J, Xu ZW, Wang KH, et al (2013). Networks of MicroRNAs and genes in retinoblastomas. APJCP, 14, 6631-6.
30 Li P, Jiao J, Gao G,et al (2012). Control of mitochondrial activity by miRNAs. J Cell Biochem, 113, 1104-10.   DOI
31 Li W, Wang J, Chen QD, et al (2013). Insulin promotes glucose consumption via regulation of miR-99a/mTOR/PKM2 pathway. PloS one, 8, e64924.   DOI
32 Lu H. Buchan RJ, Cook SA (2010). MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res, 86, 410-20.   DOI   ScienceOn
33 Macheda ML, Rogers S, Best JD (2005). Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol, 202, 654-62.   DOI
34 Ma L, Weinberg RA (2008). Micromanagers of malignancy: role of microRNAs in regulating metastasis.Trends Genet, 24, 448-56.   DOI
35 Mateescu B, Batista L, Cardon M, et al (2011). MiR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med, 17, 1627-35.   DOI
36 Pullen TJ, Silva Xavier G, Kelsey G, et al(2011). MiR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol, 31, 3182-94.   DOI
37 Shea CM, Tzertzinis G (2010). Controlled expression of functional miR-122 with a ligand inducible expression system. BMC Biotechnol, 10, 76.   DOI
38 Qi B , Yao WJ, Zhao BS, et al (2003). Involvement of microRNA-198 overexpression in the poor prognosis of esophageal cancer. APJCP, 14, 5073-6.
39 Rengaraj D, Park TS, Lee SI, et al (2013). Regulation of glucose phosphate isomerase by the 3'UTR-specific miRNAs miR-302b and miR-17-5p in chicken primordial germ cells. Biol Reprod, 89, 33.   DOI
40 Rottiers V, Naar AM (2012). MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol, 13, 239-50.   DOI   ScienceOn
41 Shi Q, Gibson GE (2011). Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a. J Neurochem, 118, 440-8.   DOI
42 Sikand K, Singh J, Ebron JS, et al (2012). Housekeeping gene selection advisory: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-actin are targets of miR-644a. PloS one, 7, e47510.   DOI
43 Singh PK, Brand RE, Mehla K (2012). MicroRNAs in pancreatic cancer metabolism. Nat Rev Gastroenterol Hepatol, 9, 334-44.   DOI
44 Srivastava SK, Bhardwaj A, Singh S, et al (2011). MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis, 32, 1832-9.   DOI   ScienceOn
45 Sun Y, Zhao X, Zhou Y, et al (2012). MiR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncol Rep, 28, 1346-52.
46 Tanaka H, Sasayama T, Tanaka K, et al (2013). MicroRNA-183 upregulates HIF-1alpha by targeting isocitrate dehydrogenase 2 (IDH2) in glioma cells. J Neurooncol, 111, 273-83.   DOI
47 Volinia S, Croce CM (2013). Prognostic microRNA/mRNA signature from the integrated analysis of patients with invasive breast cancer. Proc Natl Acad Sci U S A, 110, 7413-7.   DOI
48 Tomasetti M, Neuzil J, Dong L (2014). MicroRNAs as regulators of mitochondrial function: role in cancer suppression. Biochim Biophys Acta, 1840, 1441-53.   DOI
49 Trajkovski M, Hausser J, Soutschek J, et al (2011). MicroRNAs 103 and 107 regulate insulin sensitivity. Nature, 474, 649-53.   DOI   ScienceOn
50 Vohwinkel CU, Lecuona E, Sun H, et al (2011). Elevated CO(2) levels cause mitochondrial dysfunction and impair cell proliferation. J Biol Chem, 286, 37067-76.   DOI
51 Wang JX, Jiao JQ, Li Q, et al (2011). MiR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med, 17, 71-8.   DOI   ScienceOn
52 Wang K, Long B, Jiao JQ, et al (2012). MiR-484 regulates mitochondrial network through targeting Fis1. Nat Commun, 3, 781.   DOI
53 Wilfred BR, Wang WX, Nelson PT (2007). Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab, 91, 209-17.   DOI   ScienceOn
54 Wise DR, DeBerardinis RJ, Mancuso A, et al (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA, 105, 18782-7.   DOI   ScienceOn
55 Wong TS, Liu XB., Chung-Wai HoA, et al (2008). Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer Suppl, 123, 251-7.   DOI
56 Yamasaki T, Seki N, Yoshino H, et al (2013). Tumor-suppressive microRNA-1291 directly regulates glucose transporter 1 in renal cell carcinoma. Cancer Sci, 104, 1411-9.   DOI
57 You JS, Jones PA (2012). Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell, 22, 9-20   DOI
58 Zhang X, Ng W L, Wang P, et al (2012). MicroRNA-21 modulates the levels of reactive oxygen species by targeting SOD3 and TNFalpha. Cancer Res, 72, 4707-13.   DOI
59 Zhao H, Guan J, Lee HM, et al (2010). Up-regulated pancreatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition. Pancreas, 39, 843-6.   DOI
60 Zhou Q, Souba WW, Croce CM, et al (2010). MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut, 59, 775-84.   DOI   ScienceOn
61 Venkataraman S, Alimova I, Fan R, et al (2010). MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PloS one, 5, e10748.   DOI
62 Ichimi T, Enokida H, Okuno Y, et al (2009). Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer Suppl, 125, 345-52.   DOI   ScienceOn
63 Lunt SY, Vander Heiden MG (2011). Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol, 27, 441-4.   DOI
64 Sun Q, Chen X, Ma J, et al (2011). Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA, 108, 4129-34.   DOI