• Title/Summary/Keyword: microPET

Search Result 87, Processing Time 0.027 seconds

The excimer laser ablation of PET for nickel electroforming (니켈 전주도금을 위한 PET의 엑시머 레이저 어블레이션)

  • Shin, Dong-Sik;Lee, Je-Hoon;Seo, Jung;Kim, Do-Hoon
    • Laser Solutions
    • /
    • v.6 no.2
    • /
    • pp.35-41
    • /
    • 2003
  • In this study, manufacturing of polymer master and mold insert for micro injection molding was investigated. Ablation by excimer laser radiation could be used successfully to make 3-D microstructure of PET. The mechanism for ablative decomposition of PET with KrF excimer laser(λ: 248nm, pulse duration: 5ns) was explained by photochemical process. And this process showed PET to be adopted in polymer master for nickel mold insert. Nickel electroforming by using laser ablated PET master was preferable for replication method. Finally, it was shown that excimer laser ablation can substitute for X-ray lithography of LIGA process in microstructuring.

  • PDF

Thickness Effect of Double Layered Sheet on Burr Formation during Micro-Via Hole Punching Process (미세 비아홀 펀칭 공정 중 이종 재료 두께에 따른 버 생성)

  • 신승용;임성한;주병윤;오수익
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2004
  • Recent electronic equipment becomes smaller, more functional, and more complex. According to these trends, LTCC(low temperature co-fired ceramic) has been emerged as a promising technology in packaging industry. It consists of multi-layer ceramic sheet, and the circuit has 3D structure. In this technology via hole formation plays an important role because it provides an electric path for the packaging interconnection network. Therefore via hole qualify is very important for ensuring performance of LTCC product. Via holes are formed on the green sheet that consists of ceramic(before sintering) layer and PET(polyethylene terephthalate) one. In this paper we found the correlation between hole quality and process condition such as PET thickness and ceramic thickness. The shear behavior of double layer sheet by micro hole punching which is different from that of single layer one was also discussed.

Effects of Attenuation and Scatter Corrections in Cat Brain PET Images Using microPET R4 Scanner (MicroPET R4 스캐너에서 획득한 고양이 뇌 PET 영상의 감쇠 및 산란보정 효과)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Jong-Jin;Lee, Byeong-Il;Park, Min-Hyun;Lee, Hyo-Jeong;Oh, Seung-Ha;Kim, Kyeong-Min;Cheon, Gi-Jeong;Lim, Sang-Moo;Chung, June-Key;Lee, Myung-Chul;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.1
    • /
    • pp.40-47
    • /
    • 2006
  • Purpose: The aim of this study was to examine the effects of attenuation correction (AC) and scatter correction (SC) on the quantification of PET count rates. Materials and Methods: To assess the effects of AC and SC $^{18}F$-FDG PET images of phantom and cat brain were acquired using microPET R4 scanner. Thirty-minute transmission images using $^{68}Ge$ source and emission images after injection of FDG were acquired. PET images were reconstructed using 2D OSEM. AC and SC were applied. Regional count rates were measured using ROIs drawn on cerebral cortex including frontal, parietal, and latral temporal lobes and deep gray matter including head of caudate nucleus, putamen and thalamus for pre- and post-AC and SC images. The count rates were then normalized with the injected dose per body weight. To assess the effects of AC, count ratio of "deep gray matter/cerebral cortex" was calculated. To assess the effects of SC, ROIs were also drawn on the gray matter (GM) and white matter (WM), and contrast between them ((GM-WM)/GM was measured. Results: After the AC, count ratio of "deep gray matter/cerebral cortex" was increased by $17{\pm}7%$. After the SC, contrast was also increased by $12{\pm}3%$. Conclusion: Relative count of deep gray matter and contrast between gray and white matters were increased after AC and SC, suggesting that the AC would be critical for the quantitative analysis of cat brain PET data.

Physical Properties of Recycled Polyester Yarns According to Recycling Methods (재생 방법에 따른 재생 폴리에스터사의 물성 변화)

  • Lee, Sun-Young;Won, Jong-Sung;Yoo, Jae-Jung;Hahm, Wan-Gyu;Lee, Seung-Goo
    • Textile Coloration and Finishing
    • /
    • v.24 no.1
    • /
    • pp.91-96
    • /
    • 2012
  • The physical properties of recycled polyester yarns according to recycling methods were investigated. Virgin polyester draw texturized yarn(DTY), material-recycled(MR) polyester DTY and chemical-recycled(CR) polyester DTY were prepared. Surface morphology, thermal property, micro-structure and mechanical property of recycled polyester yarns were estimated. SEM-EDS analysis showed that the CR PET yarn had better crimp and more stable structure than MR PET yarn. Tm of the MR PET yarn was higher than that of the CR PET yarn. The intensity of the crystallization peak of the CR PET yarn was a little higher than that of the MR PET yarn. Tensile strength of the MR PET yarn was slightly higher than that of the CR PET yarn. Breaking elongation of the CR PET yarn was slightly higher than that of the MR PET yarn.

An experimental study on shrinkage and crack resistance of Hwang Toh concrete mixed with PET fiber (PET보강섬유를 혼입한 황토콘크리트의 건조수축 및 균열저항성에 관한 실험적 연구)

  • Kim, Hyun-Young;Kim, Sung-Bae;Yi, Na-Hyun;Han, Byung-Goo;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.797-800
    • /
    • 2008
  • To decrease the usage of cement, the pozzolan reaction materials are used as a mineral admixture. Hwang Toh which is broadly deposited in Korea is well known as a environment friendly material and the activated Hwang Toh which has the property of pozzolan reaction is practically used as a mineral admixture of concrete. PET fiber which is made by recycled PET bottle controls micro crack in concrete. But the study about concrete mixed with reinforcing fiber is not enough and the property of Hwang Toh concrete mixed with PET fiber is more complicated case. So this study performed drying shrinkage experiment to analyse mechanical property of Hwang Toh concrete mixed with PET fiber.

  • PDF

Room-temperature Bonding and Mechanical Characterization of Polymer Substrates using Microwave Heating of Carbon Nanotubes (CNT 마이크로파 가열을 이용한 고분자 기판의 상온 접합 및 기계적 특성평가)

  • Sohn, Minjeong;Kim, Min-Su;Ju, Byeong-Kwon;Lee, Tae-Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.89-94
    • /
    • 2021
  • The mechanical reliability of flexible devices has become a major concern on their commercialization, where the importance of reliable bonding is highlighted. In terms of component materials' properties, it is important to consider thermal damage of polymer substrates that occupy large area of the flexible device. Therefore, room temperature bonding process is highly advantageous for implementing flexible device assemblies with mechanical reliability. Conventional epoxy resins for the bonding still require curing at high temperatures. Even after the curing procedure, the bonding joint loses flexibility and exhibits poor fatigue durability. To solve this problems, low-temperature and adhesive-free bonding are required. In this work, we develop a room temperature bonding process for polymer substrates using carbon nanotube heated by microwave irradiations. After depositing multiple-wall carbon nanotubes (MWNTs) on PET polymer substrates, they are heated locally with by microwave while the entire bonding specimen maintains room temperature and the heating induces mechanical entanglement of CNT-PET. The room temperature bonding was conducted for a PET/CNT/PET specimen at 600 watt of microwave power for 10 seconds. Thickness of the CNT bonding joint was very thin that it obtains flexibility as well. In order to evaluate the mechanical reliability of the joint specimen, we performed lap shear test, three-point bending test, and dynamic bending test, and confirmed excellent joint strength, flexibility, and bending durability from each test.

A study of Brain Micro-PET Imaging and Bindingpotential with a Different Specific Activity of 18F-Fallypride in the Small Animal (소동물에서 18F-Fallypride의 비방사능에 따른 뇌의 PET이미지와 Binding Potential 차이에 대한 연구)

  • Cho, Kyu-Sang;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.418-424
    • /
    • 2015
  • In this study, we proceed if there are any changes in binding ability of receptor-ligand in some degree of SA and in radioactive uptake from the corpus striatum based on small animal experiment in vivo based on the S.A values. By dividing 18F-Fallypride into 3 S.A values(high S.A : 43.29~74 GBq/umol, ordinary S.A : 20.72~29.23 GBq/umol, low S.A : 6.29~8.51 GBq/umol), we injected directly into the veins and performed 90 minutes of dynamic scan using Micro PET. After scanning, we compared and analyzed with Binding Potential (Binding Potential) from the bilateral striatum. high SA and low SA, ordinary SA and low SA showed significant differences. Also, in the image comparison using 18F-Fallypride show high radioactive uptake in the striatum at high SA and ordinary SA, but the radioactive uptake at low SA is lower than other two SA. Since 18F-Fallypride has affinity to dopamine D2/3 pharmacokinetic, the difference of Binding Potentials at decreased level of SA values was not that significant. However, further PET research of the corpus striatum using 18F-Fallypride is necessary because the differences in images and Binding Potentials at 6.5 times smaller SA values compared to high SA value showed were significant.

Studying Acoustical Properties of Micro-Speaker as a Function of Diaphragm Material (진동판의 재질에 따른 마이크로스피커의 음향특성연구)

  • Oh Sei-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.222-228
    • /
    • 2006
  • The acoustical property of micro-speaker had been investigated as a function of the diaphragm material in this study. Young's modulus and the density of material is deeply related to the determination of sound velocity and stiffness. As a result, it was appeared that the resonance frequency of micro-speaker was PEI < PPS < PET < PEN. This experimental result was in an excellent agreement with the theoretical one. The increasing ratio of sound pressure level to the frequency between 20Hz and the resonance frequency ($f_s$) and the high resonance frequency ($f_h$) were not affected by the diaphragm material.

A Comparison between In-situ PET and ENVI-met PET for Evaluating Outdoor Thermal Comfort

  • Jeong, Da-in;Park, Kyung-hun;Song, Bong-guen
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • Purpose: PMV, PET, and similar thermal comfort indices and microclimate modeling have recently become actively used to evaluate thermal comfort. This study will look at pedestrian roads with diverse spatial characteristics on university campus using the ENVI-met model as the base for onsite measurement. Method: The PET was used as the thermal comfort index. The first microclimate measures were collected on September 20, 2014, and the second microclimate measures were collected on June 1, 2015. The ENVI-met model was used at the same time. Result: As a results, Onsite measurement results differed depending on the PET spatial characteristics. The location associated with the most discomfort had a PET of $47.8^{\circ}C$. The spatial characteristics of this place included a with no shade. The most comfortable location had shade, and the PET was $24.6^{\circ}C$. When the ENVI-met model and onsite measurements were compared, similar patterns were found, but with a few differences at specific points; this was due to the limitation of using input materials such as trees, buildings, and covering materials with the ENVI-met model. This factor must be thoroughly considered when analyzing modeling results.

Effect of Glucose Level on Brain FDG-PET Images (FDG를 이용한 Brain PET에서 Glucose Level이 영상에 미치는 영향)

  • Kim, In-Yeong;Lee, Yong-ki;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.275-280
    • /
    • 2017
  • In addition to tumors, normal tissues, such as the brain and myocardium can intake $^{18}F$-FDG, and the amount of $^{18}F$-FDG intake by normal tissues can be altered by the surrounding environment. Therefore, a process is necessary during which the contrasts of the tumor and normal tissues can be enhanced. Thus, this study examines the effects of glucose levels on FDG PET images of brain tissues, which features high glucose activity at all times, in small animals. Micro PET scan was performed on fourteen mice after injecting $^{18}F$-FDG. The images were compared in relation to fasting. The findings showed that the mean SUV value w as 0.84 higher in fasted mice than in non-fasted mice. During observation, the images from non-fasted mice showed high accumulation in organs other than the brain with increased surrounding noise. In addition, compared to the non-fasted mice, the fasted mice showed higher early intake and curve increase. The findings of this study suggest that fasting is important in assessing brain functions in brain PET using $^{18}F$-FDG. Additional studies to investigate whether caffeine levels and other preprocessing items have an impact on the acquired images would contribute to reducing radiation exposure in patients.