• Title/Summary/Keyword: micro-strain

Search Result 494, Processing Time 0.024 seconds

Combined Two-Back Stress Models with Damage Mechanics Incorporated (파손역학이 조합된 이중 후방응력 이동경화 구성방정식 모델)

  • Yun, Su-Jin
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.161-169
    • /
    • 2008
  • In the present work, the two-back stress model is proposed and continuum damage mechanics (CDM) is incorporated into the plastic constitutive relation in order to describe the plastic deformation localization and the damage evolution in a deforming continuum body. Coupling between damage mechanics and isothermal rate independent plasticity is performed using the kinematic hardening rule, which in turn is formulated by combining the nonlinear Armstrong-Frederick rule and the Phillips rule. The numerical analyses are carried out within h deformation theory. It is noted that the damage evolution within a work piece accelerates the plastic deformation localization such that the material with lower hardening exponent results in a rapid shear band formation. Moreover, the results from the numerical analysis reflected closely with the micro-structures around the fractured regime. The effects of the various hardening parameters on deformation localization are also investigated. As the nonlinear strain rate description in the back stress evolution becomes dominant, the strain localization becomes intensified as well as the damage evolution.

Evaluation of Material Characteristics by Micro/Nano Indentation Tests (마이크로/나노 압입시험에 의한 재료특성평가)

  • Lee, Hyung-Yil;Lee, Jin-Haeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.805-816
    • /
    • 2008
  • The present work reviews the methods to evaluate elastic-plastic material characteristics by indentation tests. Especially the representative stress and strain values used in some papers are critically analyzed. The values should not only represent the load-depth curve, but also represent the whole of deformed material around the impression. We briefly introduce other indentation techniques to evaluate residual stresses, creep properties, and fracture toughness. We also review some technical problems that are related to the accuracy issues in indentation tests.

Measurements of Dynamic Properties of Rock Cores Using Free-Free Resonance Tests. (자유단 공진 시험을 이용한 암시편의 동적 물성치 측정)

  • 목영진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.75-80
    • /
    • 1998
  • Dynamic measurements are used rather sparingly to determine the elastic moduli of rock cores and modulus values are not much utilized in design practices. The reason seems to result from the general perception that values obtained by dynamic measurement are much higher (about 10 time) than those determined statically. This paper presents results from dynamic and static tests on rock cores. One of the findings is that both moduli determined by statically and dynamically on a solid rock core agrees well at the same-strain. At different strain levels, the ratio between dynamic and static modult widely varies depending upon micro-cracks and discontinuites of rock cores.

  • PDF

Development of Analysis Technique for Structural Behavior of Containment with Bonded-Type Tendons (CANDU Type) (원전 부착식 텐던 격납건물의 구조거동 분석기법 개발 I-CANDU형)

  • Lee, Sang-Keun;Park, Sang-Soon;Lee, Sang-Min;Cho, Myong-Seok;Song, Young-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.643-646
    • /
    • 2004
  • The posttensioning system of nuclear containment have to be verified its structural integrity by the periodic inspection because the structural behavior of the containment is changed by the variation of the physical property of concrete and tendon as time passes. In this study a program 'SAPONC-CANDU' which is able to monitor and analysis the micro structural behavior of the domestic CANDU type containment at all times was developed. The readings of vibrating-wire strain gauges embedded into the concrete of containment were used as input data for operating the program. This program provides the long-term prediction values and bands of the concrete strain due to the time dependent factors of the concrete and tendon of the domestic CANDU type containment.

  • PDF

EFFECT OF THE DIFFERENTIAL PRESSURE BY THE BLOW-BY GAS FLOW ON THE PCV VALVE WITH A CRACK

  • Song, S.M.;Kwon, O.H.;Lee, Y.W.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.219-224
    • /
    • 2007
  • Recently, atmospheric contaminations has become worse due to the increased number of automobile. The PCV (Positive Crankcase Ventilation) valve acts as a flow control to allow re-combustion of blow-by gas by having it flow from a crankcase to an inlet manifold suction tube. Also, during the fabrication of the PCV valve, micro cracks may occur in the valve body and be extended under operation. The excessive stress distribution and crack initiation on the PCV valve body would bring an unstable blow-by gas flow rate control and would cause valve failure. The purpose of this study is to examine the crack affects on the stress and strain variations on the PCV valve according to the inlet and outlet manifold under differential pressures. From the results, we can explain the behavior of the crack extension for a safe condition of PCV valve.

Absolute effective elastic constants of composite materials

  • Bulut, Osman;Kadioglu, Necla;Ataoglu, Senol
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.897-920
    • /
    • 2016
  • The objective is to determine the mechanical properties of the composites formed in two types, theoretically. The first composite includes micro-particles in a matrix while the second involves long, thin fibers. A fictitious, homogeneous, linear-elastic and isotropic single material named as effective material is considered during calculation which is based on the equality of the strain energies of the composite and effective material under the same loading conditions. The procedure is carried out with volume integrals considering a unique strain energy in a body. Particularly, the effective elastic shear modulus has been calculated exactly for small-particle composites by the same procedure in order to determine of bulk modulus thereof. Additionally, the transverse shear modulus of fiber reinforced composites has been obtained through a simple approach leading to the practical equation. The results have been compared not only with the outcomes in the literature obtained by different method but also with those of finite element analysis performed in this study.

Experiments and numerical analyses for composite RC-EPS slabs

  • Skarzynski, L.;Marzec, I.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.689-704
    • /
    • 2017
  • The paper presents experimental and numerical investigations of prefabricated composite structural building reinforced concrete slabs with the insulating material for a residential building construction. The building slabs were composed of concrete and expanded polystyrene. In experiments, the slabs in the full-scale 1:1 were subjected to vertical concentrated loads and failed along a diagonal shear crack. The experiments were numerically evaluated using the finite element method based on two different constitutive continuum models for concrete. First, an elasto-plastic model with the Drucker-Prager criterion defined in compression and with the Rankine criterion defined in tension was used. Second, a coupled elasto-plastic-damage formulation based on the strain equivalence hypothesis was used. In order to describe strain localization in concrete, both models were enhanced in the softening regime by a characteristic length of micro-structure by means of a non-local theory. Attention was paid to the formation of critical diagonal shear crack which was a failure precursor.

A Finite Element Model for Predicting the Microstructural Evolution in Hot Rolling (열간압연시 미세조직 예측을 위한 유한요소 모델)

  • Cho, Hyunjoong;Kim, Naksoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.90-100
    • /
    • 1997
  • A full three-dimensional thermo-coupled rigid-viscoplastic finite element method and the currently developed microstructural evolution system which includes semi-empirical equations suggested by different research groups were used together to form an integrated system of process and micro- structure simulation of hot rolling. The distribution and time histroy of the momechanical variables such as temperature, strain, strain rate, and time during pass and between passes were obtained from the finite element analysis of multipass hot rolling processes. The distribution of metallurgical variables were calculated on the basis of instantaneous thermomechanical data. For the verification of this method the evolution of microstructure in plate rolling and shape rolling was simulated and their results were compared with the data available in the literature. Consequently, this approach makes it possible to describe the realistic evolution of microstructure by avoiding the use of erroneous average value and can be used in CAE of multipass hot rolling.

  • PDF

Numerical Fatigue Test Method of Welded Structures Based on Continuum Damage Mechanics (연속체 손상역학을 이용한 용접구조물의 수치피로시험기법)

  • Lee, Chi-Seung;Kim, Young-Hwan;Kim, Tae-Woo;Yoo, Byung-Moon;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.67-73
    • /
    • 2008
  • Fatigue life evaluation of welded structures in a range of high cycles is one of the most difficult problems since extremely small plastic deformation and damage occur during the loading cycles. Moreover, it is very difficult to identify the strong non-linearities of welding, inducing residual stress. In this paper, numerical fatigue test method for welded structures was developed using continuum damage mechanics with inherent strain. Recently, continuum damage mechanics, which can simulate both crack initiation at the micro-scale level and crack propagation at the meso-scale level, has been adopted in the fracture related problem. In order to consider the residual stresses in the welded strictures, damage calculation in conjunction with welding, inducing inherent strain, was proposed. The numerical results obtained from the damage calculation were compared to experimental results.

Development of Bulge Testing System for Mechanical Properties Measurement of Thin Films : Elastic Modulus of Electrolytic Copper Film (박막의 기계적 물성 측정을 위한 벌지 시험 시스템 개발: 전해 동 박의 탄성 계수)

  • Kim, Dong-Iel;Huh, Yong-Hak;Kim, Dong-Jin;Kee, Chang-Doo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1807-1812
    • /
    • 2007
  • A bulge testing system was developed to measure mechanical properties of thin film materials. A bulge pressure test system for pressurizing the bulge window of the film and a micro out-of-plane ESPI(Electronic Speckle Pattern Interferometric) system for measuring deflection of the film were included in the testing system developed. For the out-of-plane ESPI system, whole field speckle fringe pattern, corresponding to the out-of-plane deflection of the bulged film, was 3-dimensionally visualized using 4-bucket phase shifting algorithm and least square phase unwrapping algorithm. The bulge pressure for loading and unloading was controlled at a constant rate. From the pressure-deflection curve measured by this testing system, ain-plane stress-strain curve could be determined. In this study, elastic modulus of an electrolytic copper film 18 ${\mu}m$ was determined. The modulus was calculated from determining the plain-strain biaxial elastic modulus at the respective unloading slopes of the stress-strain curve and for the Poisson's ratio of 0.34.

  • PDF