Browse > Article
http://dx.doi.org/10.12989/sem.2016.57.5.897

Absolute effective elastic constants of composite materials  

Bulut, Osman (Civil Engineering Department, Faculty of Civil Engineering, Istanbul Technical University)
Kadioglu, Necla (Civil Engineering Department, Faculty of Civil Engineering, Istanbul Technical University)
Ataoglu, Senol (Civil Engineering Department, Faculty of Civil Engineering, Istanbul Technical University)
Publication Information
Structural Engineering and Mechanics / v.57, no.5, 2016 , pp. 897-920 More about this Journal
Abstract
The objective is to determine the mechanical properties of the composites formed in two types, theoretically. The first composite includes micro-particles in a matrix while the second involves long, thin fibers. A fictitious, homogeneous, linear-elastic and isotropic single material named as effective material is considered during calculation which is based on the equality of the strain energies of the composite and effective material under the same loading conditions. The procedure is carried out with volume integrals considering a unique strain energy in a body. Particularly, the effective elastic shear modulus has been calculated exactly for small-particle composites by the same procedure in order to determine of bulk modulus thereof. Additionally, the transverse shear modulus of fiber reinforced composites has been obtained through a simple approach leading to the practical equation. The results have been compared not only with the outcomes in the literature obtained by different method but also with those of finite element analysis performed in this study.
Keywords
analytical method; composites; fiber reinforced; finite element method (FEM); static analysis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1721-1732.   DOI
2 Upadhyay, A., Beniwal, R.S. and Ravmir, S. (2012), "Elastic properties of $Al_2O_3$-NiAl: a modified version of Hashin-Shtrikman bounds", Contin. Mech. Thermodyn., 24, 257-266.   DOI
3 Wang, M. and Pan, N. (2009), "Elastic property of multiphase composites with random microstructure", J. Comput. Phys., 228, 5978-5988.   DOI
4 Achenbach, J.D. (1973), Wave Propagation in Elastic Solids, Elsevier, New York, NY, USA.
5 Basaran, H., Demir, A., Bagci, M. and Ergun, S. (2015), "Experimental and numerical investigation of walls strengthened with fiber plaster", Struct. Eng. Mech., 56(2), 189-200.   DOI
6 Benveniste, Y. (1987), "A new approach to the application of Mori-Tanaka's Theory in composite materials", Mech. Mater., 6(2), 147-157.   DOI
7 Biswas, S. (2012), "Mechanical properties of bamboo-epoxy composites a structural application", Adv. Mater. Res., 1(3), 221-231.   DOI
8 Bulut, O., Kadioglu, N., Ataoglu, S., Yuksek, M. and Sancak E. (2013), "Determination of effective elastic constants of two phase composites", Res. Appl. Struct. Eng. Mech. Comput., Taylor Francis Group, London.
9 Christensen, R.M. and Lo, K.H. (1979), "Solutions for effective shear properties in three phase sphere and cylinder models", J. Mech. Phys. Solid., 27(4), 315-330.   DOI
10 Guang-hui, H. and Xiao, Y. (2015), "Analysis of higher order composite beams by exact and finite element methods", Struct. Eng. Mech., 53(4), 625-644.   DOI
11 Handlin, D., Stein, I.Y., de Villoria, R.G., Cebeci, H., Parsons, E.M., Socrate, S., Scotti, S. and Wardle, B.L. (2013), "Three-dimensional elastic constitutive relations of aligned carbon nanotube architectures", J. Appl. Phys., 114(22), 224-310.
12 Hashin, Z. and Rosen, R.W. (1964), "The elastic moduli of fiber-reinforced materials", J. Appl. Mech. Tran., ASME, 31(2), 223-232.   DOI
13 Hashin, Z. (1962), "The elastic moduli of heterogeneous materials", J. Appl. Mech. Tran., ASME, 29(1), 143-150.   DOI
14 Hashin, Z. (1965), "On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry", J. Mech. Phys. Solid., 13(3), 119-134.   DOI
15 Hashin, Z. (1983), "Analysis of composite materials-a survey", J. Appl. Mech. Tran., ASME, 50(3), 481-505.   DOI
16 Kim, N., Kim, Y.H. and Kim, H.S. (2015), "Experimental and analytical investigations for behaviors of RC beams strengthened with tapered CFRPs", Struct. Eng. Mech., 53(6), 1067-1081.   DOI
17 Kocak, D., Merdan, N., Yuksek, M. and Sancak, E. (2013), "Effects of chemical modifications on mechanical properties of luffa cylindrica", Asian J. Chem., 25(2), 637-641.   DOI
18 Lin, P.J. and Ju, J.W. (2009), "Effective elastic moduli of three-phase composites with randomly located and interacting spherical particles of distinct properties", Acta Mechanica, 208, 11-26.   DOI
19 Ni, Y. and Chiang, M.Y.M. (2007), "Prediction of elastic properties of heterogeneous materials with complex microstructure", J. Mech. Phys. Solid., 55, 517-532.   DOI
20 Seguardo, J. and Llorca, J. (2002), "A numerical approximation to the elastic properties of sphere-reinforced composites", J. Mech. Phys. Solid., 50(10), 2107-2121.   DOI
21 Shen, L. and Li, J. (2003), "Effective elastic moduli of composites reinforced by particle or fiber with an inhomogeneous interphase", Int. J. Solid. Struct., 40, 1393-1409.   DOI