• Title/Summary/Keyword: micro-rods

Search Result 34, Processing Time 0.027 seconds

A Fourier sine series solution of static and dynamic response of nano/micro-scaled FG rod under torsional effect

  • Civalek, Omer;Uzun, Busra;Yayli, M. Ozgur
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.467-482
    • /
    • 2022
  • In the current work, static and free torsional vibration of functionally graded (FG) nanorods are investigated using Fourier sine series. The boundary conditions are described by the two elastic torsional springs at the ends. The distribution of functionally graded material is considered using a power-law rule. The systems of equations of the mechanical response of nanorods subjected to deformable boundary conditions are achieved by using the modified couple stress theory (MCST) and taking the effects of torsional springs into account. The idea of the study is to construct an eigen value problem involving the torsional spring parameters with small scale parameter and functionally graded index. This article investigates the size dependent free torsional vibration based on the MCST of functionally graded nano/micro rods with deformable boundary conditions using a Fourier sine series solution for the first time. The eigen value problem is constructed using the Stokes' transform to deformable boundary conditions and also the convergence and accuracy of the present methodology are discussed in various numerical examples. The small size coefficient influence on the free torsional vibration characteristics is studied from the point of different parameters for both deformable and rigid boundary conditions. It shows that the torsional vibrational response of functionally graded nanorods are effected by geometry, small size effects, boundary conditions and material composition. Furthermore, for all deformable boundary conditions in the event of nano-sized FG nanorods, the incrementing of the small size parameters leads to increas the torsional frequencies.

Microstructural Characteristics of the Fuel Cladding Tubes Irradiated in Kori Unit 1

A Study on the Solidification Structure of Al-Si Alloy by the Continuous Casting with the Heated Mold (가열주형식 연속주조법에 의한 Al-Si합금의 응고조직에 관한 연구)

  • Kim, Won-Tae;Moon, Jeong-Tak;Kim, Myung-Han;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.464-470
    • /
    • 1994
  • The horizontal continuous casting method with the heated mold was applied to study the solidification structures of the pure Al and Al-0.5wt%Si and Al-1.0wt%Si alloy rods. The results could be summarized as follows: 1. The S/L interface structures of pure Al represented the hexagonal cells at the casting speed of 590 and 350mm/min, respectively. However, the hexagonal cells became irregular as the casting speed and(or) Si amount increased. 2. The striation increased as the Si amount and casting speed increased and was found to result from the occurrence of growth twin crystals by XRD analysis. 3. The striation did not affect the mechanical and electrical property of the drawn wire from the casted rod. This means the striation is not a serious defect which has to consider in the production of micro-sized fine wire in the drawing process.

  • PDF

A Study on the Crystalline Boron Analysis in CRUD in Spent Fuel Cladding Using EPMA X-ray Images

  • Jung, Yang Hong;Baik, Seung-Je;Jin, Young-Gwan
    • Corrosion Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Chalk River Unidentified Deposits (CRUDs) were collected from the Korean pressurized water reactor (PWR) plant (A, B, and C) where the axial offset anomaly (AOA) occurred. AOA, also known as a CRUD-induced power shift, is one of the key issues in maintaining stable PWR plant operations. CRUDs were sampled from spent nuclear fuel rods and analyzed using an electron probe micro-analyzer (EPMA). This paper describes the characteristics of boron-deposits from the CRUDs sampled from twice-burnt assemblies from the Korean PWR. The primary coolant of a PWR contains boron and lithium. It is known that boron deposition occurs in a thick CRUD layer under substantial sub-cooled nucleate boiling (SNB). The results of this study are summarized as follows. Boron was not found at the locations where the existence was confirmed in simulated CRUDs, in other words, the cladding and CRUD boundaries. Nevertheless, we clearly observed the presence of boron and confirmed that boron existed as a lump in crystalline form. In addition, the study confirmed that CRUD existed in a crystal form with a unique size of about 10 ㎛.

Dependence of the Transmission Characteristics of Photonic Crystal Fiber on the Macrobending Radius and the Mechanically Induced Microbending

  • Lee, Byeong-Ha;Moon, Dae-Seung;Eom, Joo-Beom;Kim, Jin-Chae;Kim, Hok-Young;Paek, Un-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.72-78
    • /
    • 2003
  • It is reported that the spectral loss of photonic crystal fiber (PCF) having a large hole-to-hole distance (~ 10 ${\mu}{\textrm}{m}$) is sensitive to micro- and macrobending when compared with the conventional single-mode fiber. In this paper, we will present the measurement result of the macro- and microbending characteristics of fabricated PCF with large hole-to-hole distance (> 10 ${\mu}{\textrm}{m}$) . For the macrobending experiment, the fiber was simply wound around a circular structure with variable diameter that could be reduced to a few centimeters. For the microbending case, regularly spaced silica rods were attached on a slide glass and pressed against the fiber by loading a stack of metal plates of known weight on the glass. The transmission loss spectrum shows a rather flat response to the to microbending, and this makes the PCF a good candidate for a wideband variable optical attenuator.

Methodology for numerical evaluation of fracture resistance under pinch loading of spent nuclear fuel cladding containing reoriented hydrides

  • Seyeon Kim;Sanghoon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.1975-1988
    • /
    • 2024
  • It is important to maintain cladding integrity in spent nuclear fuel management. This study proposes a numerical analysis method to evaluate the fracture resistance of irradiated zirconium alloy cladding under pinch load known to cause Mode-III failure. The mechanical behavior and fracture of the cladding under pinch loading can be evaluated by a Ring Compression Test (RCT). To simulate the fracture of hydride precipitates, zirconium matrix, and Zr/hydride interfaces under the stress field generated by RCT, a micro-structure crack propagation simulation method based on Continuum Damage Mechanics (CDM) has been proposed. Our RCT simulation model was constructed from microscopic images of irradiated cladding. In this study, we developed an automated process to generate a pixel-based finite element model by separating the hydride precipitates, zirconium matrix, and interfaces using an image segmentation method. The appropriate element size was selected to ensure the efficiency and accuracy of a crack propagation simulation. The load-displacement curves and strain energies from RCT were compared and analyzed with the simulation results of different element sizes. The finalized RCT simulation model can be used to establish the failure criterion of fuel rods under pinch loading. The advantages and limitations of the proposed method are fully discussed here.

Characterization and Formation Mechanism of Zr-Cu and Zr-Cu-Al Metallic Glass Thin Film by Sputtering Process

  • Lee, Chang-Hun;Sun, Ju-Hyun;Moon, Kyoung-Il;Shin, Seung-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.271-272
    • /
    • 2012
  • Bulk Metallic Glasses (BMGs or amorphous alloy) exhibit high strength and good corrosion resistance. Applications of thin films and micro parts of BMGs have been used a lot since its inception in the research of BMGs. However, Application and fabrication of BMGs are limited to make structural materials. Thin films of BMGs which is sputtered on the surface of structural materials by sputtering process is used to improve limits about application of BMGs. In order to investigate the difference of properties between designed alloys and thin films, we identified that thin films deposited on the surface that have the characteristic of the amorphous films and the composition of designed alloys. Zr-Cu (Cu=30, 35, 38, 40, 50 at.%) and Zr-Cu-Al (Al=10 at.% fixed, Cu=26, 30, 34, 38 at.%) alloys were fabricated with Zr (99.7% purity), Cu (99.997% purity), and Al (99.99% purity) as melting 5 times by arc melting method before rods 2mm in diameter was manufactured. In order to analyze GFA (Glass Forming Ability), rods were observed by Optical Microscopy and SEM and $T_g$, $T_x$, ($T_x$ is crystallization temperature and $T_g$ is the glass transition temperature) and Tm were measured by DTA and DSC. Powder was manufactured by Gas Atomizer and target was sintered using powder in large supercooled liquid region ($=T_x-T_g$) by SPS(Spark Plasma Sintering). Amorphous foil was prepared by RSP process with 5 gram alloy button. The composition of the foil and sputtered thin film was analyzed by EDS and EPMA. In the result of DSC curve, binary alloys ($Zr_{62}Cu_{38}$, $Zr_{60}Cu_{40}$, $Zr_{50}Cu_{50}$) and ternary alloys ($Zr_{64}Al_{10}Cu_{26}$, $Zr_{56}Al_{10}Cu_{34}$, $Zr_{52}Al_{10}Cu_{38}$) have $T_g$ except for $Zr_{70}Cu_{30}$ and $Zr_{60}Al_{10}Cu_{30}$. The compositions with $T_g$ made into powders. Figure shows XRD data of thin film showed similar hollow peak.

  • PDF

Micro/Millimeter-Wave Dielectric Indialite/Cordierite Glass-Ceramics Applied as LTCC and Direct Casting Substrates: Current Status and Prospects

  • Ohsato, Hitoshi;Varghese, Jobin;Vahera, Timo;Kim, Jeong Seog;Sebastian, Mailadil T.;Jantunen, Heli;Iwata, Makoto
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.526-533
    • /
    • 2019
  • Indialite/cordierite glass-ceramics demonstrate excellent microwave dielectric properties such as a low dielectric constant of 4.7 and an extremely high quality factor Qf of more than 200 × 103 GHz when crystallized at 1300℃/20 h, which are essential criteria for application to 5G/6G mobile communication systems. The glass-ceramics applied to dielectric resonators, low-temperature co-fired ceramic (LTCC) substrates, and direct casting glass substrates are reviewed in this paper. The glass-ceramics are fabricated by the crystallization of glass with cordierite composition melted at 1550℃. The dielectric resonators are composed of crystallized glass pellets made from glass rods cast in a graphite mold. The LTCC substrates are made from indialite glass-ceramic powder crystallized at a low temperature of 1000℃/1 h, and the direct casting glass-ceramic substrates are composed of crystallized glass plates cast on a graphite plate. All these materials exhibit excellent microwave dielectric properties.

Gamma-ray Dose Measurements in a Human Phantom Using Thermoluminescent Dosimeter

  • Yoo, Young-Soo;Lee, Hyun-Duk
    • Nuclear Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.239-247
    • /
    • 1974
  • A human phantom of polyethylene has been designed and sculptured for studying the effective radiation safety control. The phantom has the approximate size of the Korean adult and was sliced into thirty-five transverse slabs, 2.5 cm thick, The relative dose at the specified position was determined from the exposure that a TLD badge worn on the surface of the phantom body received from external ${\gamma}$-ray. The variation of the exposure as a function of depth in the phantom was measured for uncollimated ${\gamma}$-ray using TLD rods, and also isodose curves were obtained for the anatomical cross-section of the critical organs of the body. To simulate radiation exposure condition in the nuclear facility, measurements were made for given angles of incident ${\gamma}$-ray. The front to back attenuation factor for human phantom of thickness 20 cm was 0.439 for Cs$^{137}$ ${\gamma}$-ray which is in reasonable agreement with the published data.

  • PDF

Isolation and Identification of the Antagonistic Microorganisms Against Streptococous spp. Causing Dental Caries in Korean Soy Sauce (한국재래간장으로부터 구강질환 방제균의 선발 및 동정)

  • 엄수정;이여진;김진락;이은탁;김상달
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.535-540
    • /
    • 2003
  • The antagonistic microorganisms against Streptococcus sanguis, S. salivarius and S. mutans causing the dental caries of oral diseases were isolated from Korean traditional soy sauce. Twenty five strains were isolated by pairing culture, paper disc culture and dual culture methods. The isolate NG 06 strain was observed with various cultural and physiological test, and $Biolog^{(R)}$ Bacterial Identification System. The strain was identified as Bacillus racemilacticus. The isolate NG 16 strain was confirmed to Gram-positive, rods, endospore production, utilization of melibiose, casein hydrolysis and starch hydrolysis. Also the second strain NG 16 was identified as $\beta$. amyloliquefaciens.