Browse > Article
http://dx.doi.org/10.12989/anr.2022.12.5.467

A Fourier sine series solution of static and dynamic response of nano/micro-scaled FG rod under torsional effect  

Civalek, Omer (Akdeniz University, Faculty of Engineering, Department of Civil Engineering)
Uzun, Busra (Bursa Uludag University, Faculty of Engineering, Department of Civil Engineering, Gorukle Campus)
Yayli, M. Ozgur (Bursa Uludag University, Faculty of Engineering, Department of Civil Engineering, Gorukle Campus)
Publication Information
Advances in nano research / v.12, no.5, 2022 , pp. 467-482 More about this Journal
Abstract
In the current work, static and free torsional vibration of functionally graded (FG) nanorods are investigated using Fourier sine series. The boundary conditions are described by the two elastic torsional springs at the ends. The distribution of functionally graded material is considered using a power-law rule. The systems of equations of the mechanical response of nanorods subjected to deformable boundary conditions are achieved by using the modified couple stress theory (MCST) and taking the effects of torsional springs into account. The idea of the study is to construct an eigen value problem involving the torsional spring parameters with small scale parameter and functionally graded index. This article investigates the size dependent free torsional vibration based on the MCST of functionally graded nano/micro rods with deformable boundary conditions using a Fourier sine series solution for the first time. The eigen value problem is constructed using the Stokes' transform to deformable boundary conditions and also the convergence and accuracy of the present methodology are discussed in various numerical examples. The small size coefficient influence on the free torsional vibration characteristics is studied from the point of different parameters for both deformable and rigid boundary conditions. It shows that the torsional vibrational response of functionally graded nanorods are effected by geometry, small size effects, boundary conditions and material composition. Furthermore, for all deformable boundary conditions in the event of nano-sized FG nanorods, the incrementing of the small size parameters leads to increas the torsional frequencies.
Keywords
FG nanorods; fourier sine series; modified couple stress theory; stokes' transformation; vibration analysis;
Citations & Related Records
Times Cited By KSCI : 21  (Citation Analysis)
연도 인용수 순위
1 Mehar, K., Panda, S.K. and Patle, B.K. (2017), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466.   DOI
2 Murmu, T., Adhikari, S. and McCarthy, M.A. (2014), "Axial vibration of embedded nanorods undertransverse magnetic field effects via nonlocal elastic continuum theory", J. Comput. Theor. Nanosci., 11, 1230-1236. https://doi.org/10.1166/jctn.2014.3487.   DOI
3 Nejadi, M.M., Mohammadimehr, M. and Mehrabi, M. (2021), "Free vibration and bucklingof functionally graded carbon nanotubes/graphene platelets Timoshenko sandwich beam resting on variable elastic foundation", Adv. Nano Res., 10(6), 539-548. https://doi.org/10.12989/anr.2021.10.6.539.   DOI
4 Numanoglu, H. M., Ersoy, H., Akgoz, B. and Civalek, O . (2021), "A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method", Math. Method Appl. Sci., 45(5), 2592-2614. https://doi.org/10.1002/mma.7942.   DOI
5 Ozarpa, C., Esen, I. (2020), "Modelling the dynamics of a nanocapillary system with a moving mass using the nonlocal strain gradient theory", Math. Method Appl. Sci., Special Issue Paper. https://doi.org/10.1002/mma.6812.   DOI
6 Huang, Z. (2012), "Nonlocal effects of longitudinal vibration in nanorod with internal longrange interactions", Int. J. Solid. Struct., 49, 2150-2154. https://doi.org/10.1016/j.ijsolstr.2012.04.020.   DOI
7 Uzun, B. and Yayli, M.O. (2020), "Nonlocal vibration analysis of Ti-6Al-4V/ZrO2 functionallygraded nanobeam on elastic matrix", Arab. J. Geosci., 13(4), 1-10. https://doi.org/10.1007/s12517-020-5168-4.   DOI
8 Civalek, O., Uzun, B. and Yayli, M.O. (2021b), "Buckling analysis of nanobeams with deformable boundaries via doublet mechanics", Arch. Appl. Mech., 14-32. https://doi.org/10.1007/s00419-021-02032-x.   DOI
9 Schadler, L.S., Giannaris S.C. and Ajayan P.M. (1998), "Load transfer in carbon nanotube epoxy composites", Appl. Phys. Lett., 73, 3842-3844. https://doi.org/10.1063/1.122911.   DOI
10 Tabassian, R. (2013), "Torsional vibration analysis of shafts based on Adomian decomposition method", Appl. Comput. Mech., 7(2), 205-222.
11 Eringen A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity". Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.   DOI
12 Lim, C.W., Li, C. and Yu, J.L. (2012), "Free torsional vibration of nanotubes based on nonlocal stress theory", J. Sound Vib., 331(12), 2798-2808. https://doi.org/10.1016/j.jsv.2012.01.016.   DOI
13 Jalaei, M. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.   DOI
14 Kiani, K. (2013), "Longitudinal, transverse and torsional vibrations and stabilities of axially moving single-walled carbon nanotubes". Curr. Appl. Phys., 13(8), 1651-1660. https://doi.org/10.1016/j.cap.2013.05.008.   DOI
15 Lei, J., He, Y., Guo, S., Li, Z., Liu, D. (2016), "Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity", AIP Adv., 6(10), 105202. https://doi.org/10.1063/1.4964660.   DOI
16 Chang, T.P. (2012), "Small scale effect on axial vibration of nonuniform and nonhomogeneous nanorods", Comput. Mater. Sci., 54, 23-27. https://doi.org/10.1016/j.commatsci.2011.10.033.   DOI
17 Ramteke, P.M., Mehar, K., Sharma, N. and Panda, S.K. (2021c), "Numerical prediction of deflection and stress responses of functionally graded structure for grading patterns (power-law, sigmoid and exponential) and variable porosity (even/uneven)", Scientia Iranica, 28(2), 811-829. https://doi.org/10.24200/sci.2020.55581.4290.   DOI
18 Ansari, R., Oskouie, M.F., Roghani, M. and Rouhi, H. (2021), "Nonlinear analysis of laminated FG-GPLRC beams resting on an elastic foundation based on the two-phase stress-driven nonlocal model", Acta Mechanica, 232, 2183-2199. https://doi.org/10.1007/s00707-021-02935-4.   DOI
19 Aydogdu, M. and Elishakoff, I. (2014), "On the vibration of nanorods restrained by a linear springin-span", Mech. Res. Commun., 57, 90-96. https://doi.org/10.1016/j.mechrescom.2014.03.003.   DOI
20 Uzun, B., Kafkas, U. and Yayli, M.O. (2021), "Axial dynamic analysis of a Bishop nanorod with arbitrary boundary conditions", ZAMM J. Appl. Math. Mech., 100, 12. https://doi.org/10.21923/jesd.719059.   DOI
21 Khadimallah, M.A., Hussain, M., Elbahar, M., Ghandourah, E., Elimame, E. and Tounsi, A. (2021), "The effects of ring and fraction laws: Vibration of rotating isotropic cylindrical shell", Adv. Nano Res., 11(1), 19-26. https://doi.org/10.12989/anr.2021.11.1.019.   DOI
22 Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and straingradient theory and its applications in wave propagation", J. Mech. Phys. Solid, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.   DOI
23 Luat, D.T., Van Thom, D., Thanh, T.T., Van Minh, P., Van Ke, T. and Van Vinh, P. (2021), "Mechanical analysis of bi-functionally graded sandwich nanobeams", Adv. Nano Res., 11(1), 55-71. https://doi.org/10.12989/anr.2021.11.1.055.   DOI
24 Mehralian, F. and Beni, Y.T. (2016), "Size-dependent torsional buckling analysis of functionally graded cylindrical shell", Compos. Part B Eng., 94, 11-25. https://doi.org/10.1016/j.compositesb.2016.03.048.   DOI
25 Civalek, O ., Uzun, B. and Yayli, M.O . (2022), "An effective analytical method for buckling solutions of a restrained FGM nonlocal beam", Comput. Appl. Math., 41(2), 1-20. https://doi.org/10.1007/s40314-022-01761-1.   DOI
26 Chen, Y., Lee, J.D. and Eskandarian, A. (2004), "Atomistic viewpoint of the applicability of microcontinuum theories", Int. J. Solids Struct., 41, 2085-2097. https://doi.org/10.1016/j.ijsolstr.2003.11.030.   DOI
27 Civalek, O., Uzun, B. and Yayli, M.O. (2020b), "Stability analysis of nanobeams placed in electromagnetic field using a finite element method", Arab. J. Geosci., 13, 1-9. https://doi.org/10.1007/s12517-020-06188-8.   DOI
28 Civalek, O., Uzun, B. and Yayli, M.O. (2020c), "Frequency, bending and buckling loads ofnanobeams with different cross sections", Adv. Nano Res., 9(2), 91-104. https://doi.org/10.12989/anr.2020.9.2.091.   DOI
29 Guo, S., He, Y., Liu, D., Lei, J., Shen, L. and Li, Z. (2016), "Torsional vibration of carbon nanotube with axial velocity and velocity gradient effect", Int. J. Mech. Sci., 119, 88-96. https://doi.org/10.1016/j.ijmecsci.2016.09.036.   DOI
30 Akbas, S.D., Ersoy, H., Akgoz, B. and Civalek, O. (2021), "Dynamic analysis of a fiber-reinforced composite beam under a moving load by the ritz method", Mathematics, 9, 1048. https://doi.org/10.3390/math9091048.   DOI
31 Dastjerdi, S. and Beni, Y.T. (2019), "A novel approach for nonlinear bending response of macro-and nanoplates with irregular variable thickness under nonuniform loading in thermal environment", Mech. Based Des. Struct., 453-478. https://doi.org/10.1080/15397734.2018.1557529.   DOI
32 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.   DOI
33 Delfani, M.R. (2017), "Extended theory of elastica for free torsional, longitudinal and radialbreathing vibrations of single-walled carbon nanotubes", J. Sound Vib., 403, 104-128. https://doi.org/10.1016/j.jsv.2017.05.020.   DOI
34 Ebrahimi, F., Barati, M.R. and Civalek, O. (2020), "Application of ChebyshevRitz method forstatic stability and vibration analysis of nonlocal microstructure-dependent nanostructures", Eng. Comput., 36, 953-964. https://doi.org/10.1007/s00366-019-00742-z.   DOI
35 Ebrahimi, N. and Beni, Y.T. (2016), "Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory", Steel Compos. Struct., 22(6), 1301-1336. http://doi.org/10.12989/scs.2016.22.6.1301.   DOI
36 Faghidian, S.A. (2020), "Two phase local/nonlocal gradient mechanics of elastic torsion", Math. Method Appl. Sci., Special Issue Paper. https://doi.org/10.1002/mma.6877.   DOI
37 Feng, T., Liu, N., Wang, S., Qin, C., Shi, S., Zeng, X. and Liu, G. (2021), "Research on the dispersion of carbon nanotubes and their application in solution-processed polymeric matrix composites: A review", Adv. Nano Res., 10(6), 559-576. https://doi.org/10.12989/anr.2021.10.6.559.   DOI
38 Ramteke, P. M., Sharma, N., Choudhary, J., Hissaria, P. and Panda, S. K. (2021b), "Multidirectional grading influence on static/dynamic deflection and stress responses of porous FG panel structure: A micromechanical approach", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-021-01449-w.   DOI
39 Esmaeili, M. and Tadi Beni, Y. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. http://doi.org/10.22055/JACM.2019.27857.1439.   DOI
40 Ramteke, P.M., Patel, B. and Panda, S.K. (2020), "Time-dependent deflection responses of porous FGM structure including pattern and porosity", Int. J. Appl. Mech., 12(9), 2050102. https://doi.org/10.1142/S1758825120501021.   DOI
41 Ramteke, P.M., Panda, S.K. and Patel, B. (2022), "Nonlinear eigenfrequency characteristics of multi-directional functionally graded porous panels", Compos. Struct., 279, 114707. https://doi.org/10.1016/j.compstruct.2021.114707.   DOI
42 Wagner, H.D., Lourie, O., Feldman, Y. and Tenne, R. (1998), "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72, 188-190. https://doi.org/10.1063/1.120680.   DOI
43 Simsek, M. (2012), "Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods", Comput. Mater. Sci., 61, 257-265. https://doi.org/10.1016/j.commatsci.2012.04.001.   DOI
44 Swadener, J.G., George E.P. and Pharr G.M. (2002), "The correlation of the indentation size effect measured with indenters of various shapes", J. Mech. Phys. Solid, 50(4), 681-694. https://doi.org/10.1016/S0022-5096(01)00103-X.   DOI
45 Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. An., 11, 385-414. https://doi.org/10.1007/BF00253945.   DOI
46 Sarparast, H., Ebrahimi Mamaghani, A., Safarpour, M., Ouakad, H.M., Dimitri, R. and Tornabene, F. (2020), "Nonlocal study of the vibration and stability response of smallscale axially moving supported beams on viscoelastic Pasternak foundation in a hygrothermal environment", Math. Method Appl. Sci., Special Issue Paper. https://doi.org/10.1002/mma.6859.   DOI
47 Li, C. (2014), "Torsional vibration of carbon nanotubes: comparison of two nonlocal models and a semi-continuum model", Int. J. Mech. Sci., 82, 25-31. https://doi.org/10.1016/j.ijmecsci.2014.02.023.   DOI
48 Abouelregal, A.E. (2020), "A novel model of nonlocal thermoelasticity with time derivativesof higher order", Math. Method Appl. Sci., 43(11), 6746-6760. https://doi.org/10.1002/mma.6416.   DOI
49 Abouelregal, A.E. and Mohammed, W.W. (2020), "Effects of nonlocal thermoelasticity on nanoscale beams based on couple stress theory", Math. Method Appl. Sci., Special Issue Paper. https://doi.org/10.1002/mma.6764.   DOI
50 Eringen, A.C. and Suhubi, E.S. (1964), "Nonlinear theory of simple micro-elastic solids-I", Int. J. Eng. Sci., 2, 189-203. https://doi.org/10.1016/0020-7225(64)90004-7.   DOI
51 Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021a), "Vibration analysis of carbonnanotube-reinforced composite microbeams", Math. Method Appl. Sci., Special Issue Paper. https://doi.org/10.1002/mma.7069.   DOI
52 Akgoz, B., amd Civalek, O . (2013), "A size-dependent shear deformation beam model based on the strain gradient elasticity theory", Int. J. Eng. Sci., 70, 1-14.   DOI
53 Akgoz, B. and Civalek, O . (2014), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20, 606-616. https://doi.org/10.1177%2F1077546312463752.   DOI
54 Bower, C., Rosen, R., Jin, L., Han, J. and Zhou, O. (1999), "Deformation of carbon nanotubes in nanotube polymer composites", Appl. Phys. Lett., 74, 3317-3319. https://doi.org/10.1063/1.123330.   DOI
55 Danesh, M., Farajpour, A. and Mohammadi, M. (2012), "Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method", Mech. Res. Commun., 39, 23-27. https://doi.org/10.1016/j.mechrescom.2011.09.004.   DOI
56 Demir, C. and Civalek, O. (2017), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016.   DOI
57 Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020a), "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.   DOI
58 Park, S.K., Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355-2359. http://doi.org/10.1088/0960-1317/16/11/015.   DOI
59 Gheshlaghi, B., Hasheminejad, S.M and Abbasion, S. (2010), "Size dependent torsional vibration of nanotubes", Physica E, 43, 45-48. https://doi.org/10.1016/j.physe.2010.06.015.   DOI
60 Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solid, 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007.   DOI
61 Gorman, D.J. (1975), Free Vibration Analysis of Beams and Shafts, Wiley, New York, U.S.A.
62 Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. https://doi.org/10.12989/anr.2021.10.3.281.   DOI
63 Forsat, M., Musharavati, F., Eltai, E., Zain, A.M., Mobayen, S. and Mohamed, A.M. (2021), "Vibration characteristics of microplates with GNPs-reinforced epoxy core bonded to piezoelectric-reinforced CNTs patches", Adv. Nano Res., 11(2), 115-140. https://doi.org/10.12989/anr.2021.11.2.115.   DOI
64 Lazar, M. (2021), "Incompatible strain gradient elasticity of Mindlin type: screw and edge dislocations", Acta Mechanica, 232(9), 3471-3494. https://doi.org/10.1007/s00707-021-02999-2   DOI
65 Khosravi, F., Simyari, M., Hosseini, S.A. and Tounsi, A. (2020), "Size dependent axial free and forced vibration of carbon nanotube via different rod models", Adv. Nano Res., 9(3), 157-172. https://doi.org/10.12989/anr.2020.9.3.157.   DOI
66 Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001.   DOI
67 Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.   DOI
68 Liebold, C. and Muller, W.H. (2016), "Comparison of gradient elasticity models for the bending of micromaterials", Comput. Mater. Sci., 116, 52-61. https://doi.org/10.1016/j.commatsci.2015.10.031.   DOI
69 Loya, J.A., Aranda-Ruiz, J. and Fernandez-Saez, J. (2014), "Torsion of cracked nanorods using anonlocal elasticity model", J. Phys. D, 47 (3), 115304. https://doi.org/10.1088/0022-3727/47/11/115304.   DOI
70 Madenci, E. (2021), "Free vibration analysis of carbon nanotube RC nanobeams with variational approaches", Adv. Nano Res., 11(2), 157-171. https://doi.org/10.12989/anr.2021.11.2.157.   DOI
71 Numanoglu, H.M, Akgoz, B. and Civalek, O. (2018), "On dynamic analysis of nanorods", Int. J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001.   DOI
72 Ramteke, P.M., Patel, B. and Panda, S.K. (2021a), "Nonlinear eigenfrequency prediction of functionally graded porous structure with different grading patterns", Wave. Random Complex Med., 1-19. https://doi.org/10.1080/17455030.2021.2005850.   DOI
73 Ramteke, P.M. and Panda, S.K. (2021), "Free vibrational behaviour of multi-directional porous functionally graded structures", Arab. J. Sci. Eng., 46(8), 7741-7756. https://doi.org/10.1007/s13369-021-05461-6.   DOI
74 Ru, C.Q. (2001), "Axially compressed buckling of a double walled carbon nanotube embedded in an elastic medium", J. Mech. Phys. Solids, 49, 1265-1279. https://doi.org/10.1016/S0022-5096(00)00079-X.   DOI
75 Yayli, M.O. (2016), "A compact analytical method for vibration analysis of single-walledcarbon nanotubes with restrained boundary conditions", J. Vib. Control, 22(10), 2542-2555. https://doi.org/10.1177%2F1077546314549203.   DOI
76 Wang, L., Ni, Q., Li, M. and Qian, Q. (2008), "The thermal effect on vibration and instability of carbon nanotubes conveying fluid", Physica E, 40, 3179-3182. https://doi.org/10.1016/j.physe.2008.05.009.   DOI
77 Yang, J., Ke, L.L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbonnanotubes using nonlocal Timoshenko beam theory", Physica E, 42, 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035.   DOI
78 Yayli, M.O. (2011), "Stability analysis of a gradient elastic beam using finite element method", Int. J. Physical Science, 6(12), 2844-2851. https://doi.org/10.5897/IJPS11.361.
79 Yayli, M.O. (2017), "A compact analytical method for vibration of micro-sized beams with different boundary conditions", Mech. Adv. Mater. Struct., 24(6), 496508. https://doi.org/10.1080/15376494.2016.1143989.   DOI
80 Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000), "Load Transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76, 2868-2870. https://doi.org/10.1063/1.126500.   DOI
81 Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103, 023511-023526. https://doi.org/10.1063/1.2833431.   DOI
82 Yayli, M.O., Uzun, B., Deliktas, B. (2021), "Buckling analysis of restrained nanobeams using strain gradient elasticity", Wav. Random Complex Med., 1-20. https://doi.org/10.1080/17455030.2020.1871112.   DOI
83 Zeverdejani, M.K. and Beni, Y.T. (2020), "Effect of laminate configuration on the free vibration/buckling of FG Graphene/PMMA composites", Adv. Nano Res., 8(2), 103-114. https://doi.org/10.12989/anr.2020.8.2.103.   DOI
84 Murmu, T., Adhikari S. and Wang, C. (2011), "Torsional vibration of carbon nanotube buckyball systems based on nonlocal elasticity theory", Physica E, 43, 127680. https://doi.org/10.1016/j.physe.2011.02.017.   DOI
85 Tadi Beni, Y. (2016), "Size-dependent electromechanical bending, buckling and free vibration analysis of functionally graded piezoelectric nanobeams", J. Intell. Mater. Syst. Struct., 27(16), 2199-2215. https://doi.org/10.1177/1045389X15624798.   DOI
86 Ali, Z., Khadimallah, M. A., Hussain, M., Asghar, S., Al-Thobiani, F., Elbahar, M., Elimame, E. and Tounsi, A. (2021), "Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs", Adv. Nano Res., 11(2), 183-192. https://doi.org/10.12989/anr.2021.11.2.183.   DOI
87 Roostai, H. and Haghpanahi, M. (2014), "Vibration of nanobeams of different boundary conditions with multiple cracks based on nonlocal elasticity theory", Appl. Math. Modell., 38(3), 1159-1169. https://doi.org/10.1016/j.apm.2013.08.011.   DOI
88 Ramezani, S., Naghdabadi, R. and Sohrabpour, S. (2009), "Analysis of micropolar elastic beams", Eur. J. Mech. A Solids, 28(2), 202-208. https://doi.org/10.1016/j.euromechsol.2008.06.006.   DOI