Browse > Article
http://dx.doi.org/10.3807/JOSK.2003.7.2.072

Dependence of the Transmission Characteristics of Photonic Crystal Fiber on the Macrobending Radius and the Mechanically Induced Microbending  

Lee, Byeong-Ha (Department of Information and Communications Kwangju Institute of Science and Technology)
Moon, Dae-Seung (Department of Information and Communications Kwangju Institute of Science and Technology)
Eom, Joo-Beom (Department of Information and Communications Kwangju Institute of Science and Technology)
Kim, Jin-Chae (Department of Information and Communications Kwangju Institute of Science and Technology)
Kim, Hok-Young (Department of Information and Communications Kwangju Institute of Science and Technology)
Paek, Un-Chul (Department of Information and Communications Kwangju Institute of Science and Technology)
Publication Information
Journal of the Optical Society of Korea / v.7, no.2, 2003 , pp. 72-78 More about this Journal
Abstract
It is reported that the spectral loss of photonic crystal fiber (PCF) having a large hole-to-hole distance (~ 10 ${\mu}{\textrm}{m}$) is sensitive to micro- and macrobending when compared with the conventional single-mode fiber. In this paper, we will present the measurement result of the macro- and microbending characteristics of fabricated PCF with large hole-to-hole distance (> 10 ${\mu}{\textrm}{m}$) . For the macrobending experiment, the fiber was simply wound around a circular structure with variable diameter that could be reduced to a few centimeters. For the microbending case, regularly spaced silica rods were attached on a slide glass and pressed against the fiber by loading a stack of metal plates of known weight on the glass. The transmission loss spectrum shows a rather flat response to the to microbending, and this makes the PCF a good candidate for a wideband variable optical attenuator.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Petermann, and R. Kuhne, “Upper and lower limits for the microbending loss in arbitrary single-mode fibers,” J. Lightwave Technol., vol. LT-4, no. 1, pp. 2-7, 1986.   DOI
2 N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: Measurement and future opportunities,” Opt. Lett., vol. 24, no. 20, pp. 1395-1397, 1999; errata on 15 Nov.1999.   DOI
3 J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett., vol. 34, no. 14, pp. 1347-1348, 1998.   DOI   ScienceOn
4 A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett., vol. 25, no. 18, pp. 1325-1327, 2000.   DOI
5 J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science, vol. 282, pp. 1476-1479, 1998.   DOI   ScienceOn
6 J. B. Eom, K. W. Park, T. -J. Eom, Y. Chung, W. -T. Han, U. C. Paek, and B. H. Lee, “Transmission and numerical aperture measurement of photonic crystal fiber,” in OECC 2001, OSA, Sydney, Postdeadline, PDP 2.05, 2001.
7 D. Marcuse, “Microdeformation losses of single-mode fibers,” Appl. Opt., vol. 23, no. 7, pp. 1082-1091, 1984.   DOI
8 W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett., vol. 36, no. 1, pp. 53-55, 2000.   DOI   ScienceOn
9 J. C. Knight, T. A. Birks, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, no. 13, pp. 961-963, 1997.   DOI
10 T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using singlematerial fibers,” IEEE Photon. Technol. Lett., vol. 11, no. 6, pp. 674- 676, 1999.   DOI   ScienceOn
11 E. Yablonovitch, “photonic band-gap structures,” J. Opt. Soc. Am. B, vol. 10, no. 2, pp. 283-295, 1993.   DOI
12 M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” Electron. Lett., vol. 35, no. 1, pp. 63-64, 1999.   DOI   ScienceOn
13 D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett., vol. 23, no. 21, pp. 1662-1664, 1999.   DOI
14 B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fiber,” J. Lightwave Technol., vol. 18, no. 8, pp. 1084-1100, 2000.   DOI   ScienceOn
15 T. Sorensen, J. Broeng, A. Bjarklev, E. Kundsen, and E. E. Barkou Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett., vol.37, no.5, pp. 287-288, 2001.   DOI   ScienceOn
16 H. F. Taylor, “Bending effects in optical fibers.” J. Lightwave Technol., vol. LT-2, no. 5, pp. 617-628, 1984.   DOI