• Title/Summary/Keyword: micro-contact printing

Search Result 48, Processing Time 0.021 seconds

Selective Pattern Growth of Silica Nanoparticles by Surface Functionalization of Substrates (기판 표면 기능화에 의한 실리카 나노입자의 선택적 패턴 성장)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.20-25
    • /
    • 2020
  • As nanoscience and nanotechnology advance, techniques for selective pattern growth have attracted significant attention. Silica nanoparticles (NPs) are used as a promising nanomaterials for bio-labeling, bio-imaging, and bio-sensing. In this study, silica NPs were synthesized by a sol-gel process using a modified Stöber method. In addition, the selective pattern growth of silica NPs was achieved by the surface functionalization of the substrate using a micro-contact printing technique of a hydrophobic treatment. The particle size of the as-synthesized silica NPs and morphology of selective pattern growth of silica NPs were characterized by FE-SEM. The contact angle by surface functionalization of the substrate was investigated using a contact angle analyzer. As a result, silica NPs were not observed on the hydrophobic surface of the OTS solution treatment, which was coated by spin coating. In contrast, the silica NPs were well coated on the hydrophilic surface after the KOH solution treatment. FE-SEM confirmed the selective pattern growth of silica NPs on a hydrophilic surface, which was functionalized using the micro-contact printing technique. If the characteristics of the selective pattern growth of silica NPs can be applied to dye-doped silica NPs, they will find applications in the bio imaging, and bio sensing fields.

Additive Fabrication of Patterned Multi-Layered Thin Films of Ta2O5 and CdS on ITO Using Microcontact Printing Technique

  • Lee, Jong-Hyeon;Woo, Soo-Yeun;Kwon, Young-Uk;Jung, Duk-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.183-188
    • /
    • 2003
  • The micro-patterning of multi-layered thin films containing CdS and $Ta_2O_5$ layers on ITO substrate with various structures was successfully obtained by combining three different techniques: chemical solution depositions, sol-gel, and microcontact printing (μCP) methods using octadecyltrichlorosilane (OTS) as the organic thin layer template. $Ta_2O_5$ layer was prepared by sol-gel casting and CdS one obtained by chemical solution deposition, respectively. Parallel and cross patterns of multi-layers with $Ta_2O_5$ and CdS films were fabricated additively by successive removal of OTS layer pre-formed. This study presents the designed architectures consisting of the two types of feature having horizontal dimensions of 170 ㎛ and 340 ㎛ with constant thickness ca. 150 nm of each deposited materials. The thin film lay-out of the cross-patterning is composed of four regions with chemically different layer compositions, which are confirmed by Auger electron microanalysis.

Novel 3D nanofabrication technique and its applications

  • Jeon, Seok-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.15.1-15.1
    • /
    • 2009
  • Nano transfer printing and micro contact printing is well known printing method based on soft lithography which uses conformal soft elastomer with designed surface relief structures. Here I introduce another class of novel 3D nanofabrication technique by using the same elastomer but in a different manner. The approach, which we refer to as proximity field nanopatterning, uses the surface-reliefed elastomers as phase masks to pattern thick layers of transparent, photosensitive materials. Aspects of the optics, the materials, and the physical chemistry associated with this method are outlined. A range of 3D structures illustrate its capabilities, and several application examples demonstrate possible areas of use in technologies ranging from microfluidics to photonic materials to density gradient structures for chemical release and high-energy density science.

  • PDF

Facile fabrication of ZnO Nanostructure Network Transistor by printing method

  • Choi, Ji-Hyuk;Moon, Kyeong-Ju;Jeon, Joo-Hee;Kar, Jyoti Prakash;Das, Sachindra Nath;Khang, Dahl-Young;Lee, Tae-Il;Myoung, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.31.1-31.1
    • /
    • 2010
  • Various ZnO nanostructures were synthesized and ZnO nanostructure-based self-assembled transistors were fabricated. Compared to spindle and flower like nanostructure, the ZnO nanorod (NR) structure showed much stronger gate controllability, and greatly enhanced device performance, demonstrating that this structural variation leads to significant differences of the nanostructure network-based device performance. Also, patterned dry transfer-printing technique that can generate monolayer-like percolating networks of ZnO NRs has been developed. The method exploits the contact area difference between NR-NR and NR-substrate, rather than elaborate tailoring of surface chemistry or energetic. The devices prepared by the transferring method exhibited on/off current ratio, and mobility of ${\sim}2.7{\times}10^4$ and ${\sim}1.03\;cm^2/V{\cdot}s$, respectively. Also, they exhibited showing lower off-current and stronger gate controllability due to defined-channel between electrodes and monolayer-like network channel configuration. With multilayer stacks of nanostructures on stamp, the monolayer-like printing can be repeated many times, possibly on large area substrate, due to self-regulating printing characteristics. The method may enable high-performance macroelectronics with materials that have high aspect ratio.

  • PDF

Implementation of User Interface for DNA Micro Array Printing Technology (DNA 마이크로어레이 프린팅을 위한 사용자 인터페이스 적용기술)

  • Park, Jae-Sam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.12
    • /
    • pp.1875-1882
    • /
    • 2013
  • Micro-array technology contributes numerous achievements such as ordering of gene network and integration of genomic. This technology is well established as means for investigating patterns of gene expression. DNA micro-arrays utilize Affymetric chips where a large quantity of DNA sequences may be synthesized. There are two general type of conventional DNA array spotter: contact and piezoelectric. The contact technology used spotting pin technology to make contact with the glass slide surface. This may caused damage or scratches to the surface matrix where protein will be contaminated and may not bind specifically. Piezoelectric technology available at this present time on the other hand requires the analyzer to print the result that can only be done within the laboratory despite of mass production. Therefore, in this paper, high-throughput technology is developed for providing greater consistency in feature spot without touching the glass slide surface.

Fabrication of field emitters using a filtration-taping-transfer method

  • Song, Ye-Nan;Shin, Dong-Hoon;Sun, Yuning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.466-466
    • /
    • 2011
  • There have been several methods to fabricate carbon nanotube (CNT) emitters, which include as-grown, spraying, screen-printing, electrophoresis and bonding methods. Unfortunately, these techniques generally suffer from two main problems. One is a weak mechanical adhesion between CNTs and the cathode. The as-grown, spraying and electrophoresis methods show a weak mechanical adhesion between CNTs and the cathodes, which induces CNT emitters pulled out under a high electric field. The other is a severe degradation of the CNT tip due to organic binders used in the fabrication process. The screen-printing method which is widely used to fabricate CNT emitters generally shows a critical degradation of CNT emitters caused by the organic binder. Such kinds of problems induce a short lifetime of the CNT field emitters which may limit their practical applications. Therefore, a robust CNT emitter which has the strong mechanical adhesion and no degradation is still a great challenge. Here, we introduce a simple and effective technique for fabrication of CNT field emitter, namely filtration-taping-transfer method. The CNT emitters fabricated by the filtration-taping-transfer method show the low turn-on electric fields, the high emission current, good uniformity and good stability. The enhanced emission performance of the CNT emitters is mainly attributed to high emission sites on the emitter area, and to good ohmic contact and strong mechanical adhesion between the emitters and cathodes. The CNT emitters using a simple and effective fabrication method can be applied for various field emission applications such as field emission displays, lamps, e-beam sources, and x-ray sources. The detail fabrication process will be covered at the poster.

  • PDF

Ductile-Regime Nanopatterning on Pyrex 7740 Glass Surface and Its Application to the Fabrication of Positive-tone PDMS Stamp for Microcontact Printing (${\mu}CP$) (미소접촉인쇄 공정용 철형 PDMS 스템프 제작을 위한 Pyrex 7740 glass 표면의 연성영역 나노패터닝)

  • Kim H. I.;Youn S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.40-43
    • /
    • 2004
  • Stamps for microcontact processing are fabricated by casting elastomer such as PDMS on a master with a negative of the desired pattern. After curing, the PDMS stamp is peeled away from the master and exposed to a solution of ink and then dried. Transfer of the ink from the PDMS stamp to the substrate occurs during a brief contact between stamp and substrate. Generally, negative-tone masters, which are used for making positive-tone PDMS stamps, are fabricated by using photolithographic technique. The shortcomings of photolithography are a relative high-cost process and require extensive processing time and heavy capital investment to build and maintain the fabrication facilities. The goal of this study is to fabricate a negative-tone master by using Nano-indenter based patterning technique. Various sizes of V-grooves and U-groove were fabricated by using the combination of nanoscratch and HF isotropic etching technique. An achieved negative-tone structure was used as a master in the PDMS replica molding process to fabricate a positive-tone PDMS stamp.

  • PDF

Molecular Linker Enhanced Assembly of CdSe/ZnS Core-Shell Quantum Dots (분자 끈을 활용한 CdSe/ZnS 양자 점의 향상된 배열)

  • Cho, Geun Tae;Lee, Jong Hyeon;Nam, Hye Jin;Jung, Duk Young
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1081-1086
    • /
    • 2008
  • QDs-LEDs(quantum dot light emitting device) should contain well-organized arrays of QDs on an electron transport layer. Thin films of CdSe/ZnS core-shell QDs were successfully fabricated on $TiO_2$ substrates by using PDMS stamp and micro contact printing method. 2-Carboxyethylphosphonic acid(CAPO) and 1,6-hexanedithiol(HDT) were employed as molecular linkers in assembling CdSe/ZnS core-shell QDs with high-density and uniform array. The CAPO increased the binding strength between the QDs and the substrates, and the HDT induced the strong inter-particle attractions of assembled QDs. The assembling properties of QDs thin films were characterized by SEM, AFM, optical microscope and photoluminescence spectroscope(PL).

Selective Vapor-Phase Deposition of Conductive Poly(3,4-ethylenedioxythiophene) Thin Films on Patterned FeCl3 Formed by Microcontact Printing

  • Lee, Bo H.;Cho, Yeon H.;Shin, Hyun-Jung;Kim, Jin-Yeol;Lee, Jae-gab;Lee, Hai-won ;Sung, Myung M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1633-1637
    • /
    • 2006
  • We demonstrate a selective vapor-phase deposition of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) thin films on patterned $FeCl_3$. The PEDOT thin films were grown on various substrates by using the vapor-phase polymerization of ethylenedioxythiophene (EDOT) with $FeCl_3$ catalytic layers at 325 K. The selective deposition of the PEDOT thin films using vapor-phase polymerization was accomplished with patterned $FeCl_3$ layers as templates. Microcontact printing was done to prepare patterned $FeCl_3$ on polyethyleneterephthalate (PET) substrates. The selective vapor-phase deposition is based on the fact that the PEDOT thin films are selectively deposited only on the regions exposing $FeCl_3$ of the PET substrates, because the EDOT monomer can be polymerized only in the presence of oxidants, such as $FeCl_3$, Fe($CIO_4$), and iron(II) salts of organic acids/inorganic acids containing organic radicals.

Development of High-Quality Poly(3,4-ethylenedioxythiophene) Electrode Pattern Array Using SC1 Cleaning Process (SC1 세척공정을 이용한 고품질 Poly(3,4-ethylenedioxythiophene) 전극 패턴 어레이의 개발)

  • Choi, Sangil;Kim, Wondae;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.4 no.4
    • /
    • pp.311-314
    • /
    • 2011
  • Application of self-assembled monolayers (SAMs) to the fabrication of organic thin film transistor has been recently reported very often since it can help to provide ohmic contact between films as well as to form simple and effective electrode pattern. Accordingly, quality of these ultra-thin films is becoming more imperative. In this study, in order to manufacture a high quality SAM pattern, a hydrophobic alkylsilane monolayer and a hydrophilic aminosilane monolayer were selectively coated on $SiO_2$ surface through the consecutive procedures of a micro-contact printing (${\mu}CP$) and dip-coating methods under extremely dry condition. On a SAM pattern cleaned with SC1 solution immediately after ${\mu}CP$, poly(3,4-ethylenedioxythiophene) (PEDOT) source and drain electrode array were very selectively and nicely vapour phase polymerized. On the other side, on a SC1-untreated SAM pattern, PEDOT array was very poorly polymerized. It strongly suggests that the SC1 cleaning process effectively removes unwanted contaminants on SAM pattern, thereby resulting in very selective growth of PEDOT electrode pattern.