• Title/Summary/Keyword: micro controller system control

Search Result 245, Processing Time 0.025 seconds

Development of BLDC Motor Valve Actuator Controller for Rapid Maneuvering Thruster (BLDC 모터를 이용한 고기동 추력기용 밸브 구동장치 제어기 개발)

  • Lee, Jung-Un;Jang, Hee-Jin;Park, Chi-Hyoung;Park, Sang-Joon;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.929-932
    • /
    • 2011
  • We developed a valve actuator controller for thruster system. This thruster system has four actuators and the actuator use a BLDC motor. Controller was made based on system and control requirement. The controller is consist of power, control and Amp. The control module use a micro-controller which is TMS320F28335 of Texas Instruments. It works for digital PID control and CAN communication and system control. The amp module for three phase BLDC motor use IGBT.

  • PDF

Design Scheme of A Micro Real-Time Control System with CAN and RTOS (CAN과 RTOS를 내장한 소형 실시간 시스템 설계 기법)

  • Lim, Young-Gyu;Kim, Dong-Seoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.207-215
    • /
    • 2014
  • In this paper, we propose a Micro Real-Time Control System (MRTCS) for decreasing the delay during interrupts processing and data transfer on sensor nodes. The MRTCS consists of a control, sensor nodes based on Controller Area Network (CAN) device. The control node was designed with Real Time Operating System (RTOS) on top of the small Micro Control Unit (sMCU). Sensor nodes have the CAN device without sMCU, which have multiple Digital Inputs, Outputs (DI/DO) and the CAN controller. We have evaluated with OCTAVE v3.6.4 from open source for system performance. Simulation results show that the system performance was increased through the delay reducing for interrupt processing and internal data transfer. We verify that a proposed MRTCS approach will be adapted to various real-time control system.

A Design of Impact Control Device for High-speed Mounting of Micro-Chips (소형 칩의 고속 표면실장을 위한 충격력 제어 장치의 설계)

  • 이덕영;김병만;심재홍;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.121-121
    • /
    • 2000
  • This paper presents a design of macro-micro system for high-speed mounting of micro-chips. A macro motion device is driven by DC servomotor and ball screw mechanism. To obtain fast response, a micro motion device utilizes a precision elector magnetic actuator In order to reduce peak impact force, We evaluate the design parameters that have an effect on it. And a characteristic of response is simulated using PID controller in velocity and force control.

  • PDF

The Control of a flexible Robotic Finger Driven by PZT (압전소자로 구동되는 유연성 로봇 핑거의 제어)

  • 류재춘;박종국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.568-576
    • /
    • 1998
  • In this thesis discuss with a flexible robotic finger design and controller which is used for the micro flexible robotic finger. So, miniaturization, precision, controller for the control of grasping force and actuator were needed. And, even if we develop a new actuator and controller, in order to use on real system, we must considerate of a many side problem. In a force control of micro flexible finger for grasping an object, the fingertip's vibration was more important task of accuracy control. And, controller were adopt the PD/PI mixed type fuzzy controller. The controller were consist of two part, one is a PD type fuzzy controller for increase the rising time response, the other is a PI type fuzzy controller for decrease of steady-state error. Especially, in a PD type fuzzy controller, we used only seven rules. And, for a PI controller, we adopt a reset factor for the control of input values. so, we have overcome the exceed of controller's input range. For the estimate of ontroller's utility and usefulness, we have experiment and computer simulation of three cases. First, we consider of unit force grasping control for a task object, which is 0.03N. Second, bounding grasping force control which is add to a sinusoidal force on the unit force. At this cases the task force is (0.03+0.01 sin wt N). And consider of following of rectangular forces.

  • PDF

Design of a Low-Vibration Micro-Stepping Controller for Pan-Tilt Camera (팬.틸트 카메라의 저 진동 마이크로스텝핑 제어기 설계)

  • Yoo, Jong-won;Kim, Jung-han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.43-51
    • /
    • 2010
  • Speed, accuracy and smoothness are the important properties of pan-tilt camera. In the case of a high ratio zoom lens system, low vibration characteristic is a crucial point in driving pan-tilt mechanism. In this paper, a novel micro-stepping controller with a function of reducing vibration was designed using field programmable gate arrays (FPGA) technology for high zoom ratio pan-tilt camera. The proposed variable reference current (VRC) control scheme reduces vibration decently and optimizing coil current in order to prevent the step motor from occurring missing steps. By employing VRC control scheme, the vibration in low speed could be significantly minimized. The proposed controller can also make very high speed of 378kpps micro-step driving, and increase maximum acceleration in motion profiles.

The Design of Active Controller using SMC:An application to a Micro Actuator in MEMS (슬라이딩 모드 제어기법(SMC)을 이용한 마이크로 액추에이터 (Micro Actuator)의 능동 제어기 설계)

  • Jee, Tae-Young;Oh, Yong-Sul;Cho, Byung-Sun;Heo, Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2083-2086
    • /
    • 2004
  • Variable Structure Controller with effective tracking performance is propose to control micro actuator system. Propsed VSC(Variable Structure Control) technique is implemented to tracking control of comb driving system having high non-linearity. The tracking performance due to VSC technique is compared to conventional PD(Proportional Derivative) control technique, reveals improved results.

  • PDF

Operation Analysis of a Communication-Based DC Micro-Grid Using a Hardware Simulator

  • Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.313-321
    • /
    • 2013
  • This paper describes the operation analysis results of a communication-based DC micro-grid using a hardware simulator developed in the lab. The developed hardware simulator is composed of distributed generation devices such as wind power, photovoltaic power and fuel cells, and energy storage devices such as super-capacitors and batteries. Whole system monitoring and control was implemented using a personal computer. The power management scheme was implemented in a main controller based on a TMS320F28335 chip. The main controller is connected with the local controller in each of the distributed generator and energy storage devices through the communication link based on a CAN or an IEC61850. The operation analysis results using the developed hardware simulator confirm the ability of the DC micro-grid to supply the electric power to end users.

Control of Magnetic Bearing using ATmega128(Focused on experiments) (ATmega128 소자를 이용한 자기베어링 제어(실험을 중심으로))

  • Yang, Joo-Ho;Choi, Gyo-Ho;Choung, Kwang-Gyo
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.139-146
    • /
    • 2013
  • Because the magnetic bearing supports levitating body without contact, wear, noise and vibration, it is very useful to high revolution machinery. In this paper we selected ATmega 128, a less expensive and widely used micro controller, for control the magnetic bearing system. And we selected the sampling time and the control gain of PID controller through trial-and-error. The control program of the one board controller utilized lookup table to reduce calculation time, and bit shifting for the integer calculation in instead of floating point calculation. As the results, the controller carried out relatively high speed PID control on sampling time 0.25 ms. At last the rotation test for the magnetic bearing system was carried out by 3 phase induction motor and air turbine.

Control of Elevator System Model Using Microcomputer (Microcomputer를 이용한 엘리베이터 시스템 모델의 제어)

  • 송현빈;변증남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.2
    • /
    • pp.35-42
    • /
    • 1979
  • A conventional elevator system, which requires simultaneous control of the speed and the position, contains complicated analog hardwares as the control system. Recent advances in LSI technology, however, suggest that the control of such ane levator system may be realized by Incorporating digital device and microcomputer. In this paper, such a possibility is investigated. In this paper, the digital controller, witch is implemented around an IMSAl 8080 microcomputer is designed for the control of model elevator system. Experiments show that this contra .system tracks the given velocity curve as well as it brings the elevator to the enact point.

  • PDF

Implementation of the Temperature Control System Using K-type Thermocouple (K형 열전대를 이용한 온도제어 시스템 구현)

  • Kim Jeong-Lae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.127-133
    • /
    • 2004
  • This study was carried out develope a temperature control system of temperature control by used K-thermocouple. This system was producted a stable voltage regulator 22Bit of digital converter and 22Bit of resolution. It was producted a micro voltage of 25 times amplification and controlled a DC0.1V~DC4.7V within 0~120$0^{\circ}C$. We designed block-diagram of hardware and software by PIC16C74 in a micro-controller, we are made up of a VFD function and can be used interface of a power block.

  • PDF