• Title/Summary/Keyword: micro/nano technology

Search Result 563, Processing Time 0.025 seconds

A Study on Manufacturing Method of Nano-Micro Hybrid Pattern Using Indentation Machining Method and AAO Process (누름가공과 AAO 공정을 이용한 나노-마이크로 복합패턴 제작방법 연구)

  • Kim, Han-Hee;Jeon, Eun-Chae;Choi, Dae-Hee;Jang, Woong-Ki;Park, Yong-Min;Je, Tae-Jin;Choi, Doo-Sun;Kim, Byeong-Hee;Seo, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.63-68
    • /
    • 2015
  • Micro/nano patterns for optical concentration and diffusion have been studied in the various fields such as displays, optics, and sensors. Conventional micro patterns were continuous and linear shapes due to using linear-type light sources, however, recently non-continuous patterns have been applied as point sources are used for dot-type light sources such as LEDs and OLEDs. In this study, a hybrid machining technology combining an indentation machining method and an AAO process was developed for manufacturing the non-continuous micro patterns having nano patterns. First, mirror-like surfaces ($R_a<20nm$) of pure Aluminum substrates were obtained by optimizing cutting conditions. Then, The letter of 'K' consisting of the arrays of the micro patterns was manufactured by the indentation machining method which has a similar principle to indentation hardness testing. Finally, nano patterns were machined by AAO process on the micro patterns. Conclusively, a specific letter having nano-micro hybrid patterns was manufactured in this study.

Development of Nano Machining Technology using Focused ion Beam (FIB를 이용한 나노가공공정 기술 개발)

  • 최헌종;강은구;이석우;홍원표
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.482-486
    • /
    • 2004
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its use in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies, such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. This paper presents that the recent development and our research goals in FIB nano machining technology are given. The emphasis will be on direct milling, or chemical vapor deposition techniques (CVD), and this can distinguish the FIB technology from the contemporary photolithography process and provide a vital alternative to it. After an introduction to the technology and its FIB principles, the recent developments in using milling or deposition techniques for making various high-quality devices and high-precision components at the micro/nano meter scale are examined and discussed. Finally, conclusions are presented to summarize the recent work and to suggest the areas for improving the FIB milling technology and for studying our future research.

  • PDF

Development of Surface Treatment for Hydrophobic Property on Aluminum Surface (알루미늄의 발수 표면처리 기술 개발)

  • Byun, Eun-Yeon;Lee, Seung-Hun;Kim, Jong-Kuk;Kim, Yang-Do;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.4
    • /
    • pp.151-154
    • /
    • 2012
  • A hydrophobic surface has been fabricated on aluminum by two-step surface treatment processes consisting of structure modification and surface coating. Nature inspired micro nano scale structures were artificially created on the aluminum surface by a blasting and Ar ion beam etching. And a hydrophobic thin film was coated by a trimethylsilane ($(CH_3)_3SiH$) plasma deposition to minimize the surface energy of the micro nano structure surface. The contact angle of micro nano structured aluminum surface with the trimethylsilane coating was $123^{\circ}$ (surface energy: 9.05 $mJ/m^2$), but the contact angle of only trimethylsilane coated sample without the micro nano surface structure was $92^{\circ}$ (surface energy: 99.15 $mJ/m^2$). In the hydrophobic treatment of aluminum surface, a trimethylsilane coated sample having the micro nano structure was more effective than only trimethylsilane coated sample without the micro nano structure.

Effect of Nano/micro Silica on Electrical Property of Unsaturated Polyester Resin Composites

  • Sharma, Ram Avatar;D'Melo, Dawid;Bhattacharya, Subhendu;Chaudhari, Lokesh;Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.31-34
    • /
    • 2012
  • The addition of nano/micro silica into unsaturated polyester resin (UPR) results in the improvement of the electrical properties of Silica-UPR composites. The surface, volume resistivity, dielectric strength, dissipation factor and dry arc resistivity of nano silica-UPR composites were found to improve significantly. The effects of the nano and micro fillers in UPR have been evaluated. They are presented in this paper. To evaluate the electrical properties of the nano & micro composites, all the measurements were done as per the prescribed methods in ASTM. It was observed that the addition of nano silica improves the electrical properties as compared to micro silica. The better dispersion of silica particles in unsaturated polyester resin enhances the electrical properties of silica-UPR composites.

Implementation of a Piezoresistive MEMS Cantilever for Nanoscale Force Measurement in Micro/Nano Robotic Applications

  • Kim, Deok-Ho;Kim, Byungkyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.789-797
    • /
    • 2004
  • The nanoscale sensing and manipulation have become a challenging issue in micro/nano-robotic applications. In particular, a feedback sensor-based manipulation is necessary for realizing an efficient and reliable handling of particles under uncertain environment in a micro/nano scale. This paper presents a piezoresistive MEMS cantilever for nanoscale force measurement in micro robotics. A piezoresistive MEMS cantilever enables sensing of gripping and contact forces in nanonewton resolution by measuring changes in the stress-induced electrical resistances. The calibration of a piezoresistive MEMS cantilever is experimentally carried out. In addition, as part of the work on nanomanipulation with a piezoresistive MEMS cantilever, the analysis on the interaction forces between a tip and a material, and the associated manipulation strategies are investigated. Experiments and simulations show that a piezoresistive MEMS cantilever integrated into a micro robotic system can be effectively used in nanoscale force measurements and a sensor-based manipulation.

Inorganic and Organic Nano Materials and Devices

  • Li, G.P.;Bachman, Mark
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.4.1-4.1
    • /
    • 2009
  • The dream of futurists andtechnologists is to build complex, multifunctional machines so small that theycan only be seen with the aid of a microscope. The unprecedented technologyadvancements in miniaturizing integrated circuits on semiconductors, and theresulting plethora of sophisticated, low cost electronic devices demonstratethe impact that micro/nano scale engineering can have when applied only to thearea of electrical and computer engineering. Emerging research efforts indeveloping organic and inorganic nano materials together with using micro/nanofabrication techniques for implementing integrated multifunctional devices hopeto yield similar revolutions in other engineering fields. By cross linking theindividual engineering fields through micro/nano technology, various organicand inorganic materials and miniaturized system devices can be developed thatwill have future impacts in the IT and life science applications. Yet to buildthe complex micromachines and nanomachine of the future, engineering will needto develop the technology capable of seamlessly integrating these materials andsubsystems together at the micro and nano scales. The micromachines of thefuture will be “integrated nanosystems,” complex devices requiring the integration of multiple materials,phenomena, technologies, and functions at the same platform. To develop thistechnology will require great efforts in materials science and engineering, infundamental and applied sciences. In this talk, we will first discuss thenature of micro and nanotechnology research for IT and life sciences, and thenintroduce selected current activities in micro and nanotechnology research fororganic and inorganic materials and devices. The newly developed micro/nanofabrication processes and devices, combined with in-depth scientificunderstandings of materials, can lead to rapid development of next generationsystems for applications in IT and life sciences.

  • PDF

Optical Image Encryption Technique Based on Hybrid-pattern Phase Keys

  • Sun, Wenqing;Wang, Lei;Wang, Jun;Li, Hua;Wu, Quanying
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.540-546
    • /
    • 2018
  • We propose an implementation scheme for an optical encryption system with hybrid-pattern random keys. In the encryption process, a pair of random phase keys composed of a white-noise phase key and a structured phase key are positioned in the input plane and Fourier-spectrum plane respectively. The output image is recoverable by digital reconstruction, using the conjugate of the encryption key in the Fourier-spectrum plane. We discuss the system encryption performance when different combinations of phase-key pairs are used. To measure the effectiveness of the proposed method, we calculate the statistical indicators between original and encrypted images. The results are compared to those generated from a classical double random phase encoding. Computer simulations are presented to show the validity of the method.

3D Bioprinted GelMA/PEGDA Hybrid Scaffold for Establishing an In Vitro Model of Melanoma

  • Duan, Jiahui;Cao, Yanyan;Shen, Zhizhong;Cheng, Yongqiang;Ma, Zhuwei;Wang, Lijing;Zhang, Yating;An, Yuchuan;Sang, Shengbo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.531-540
    • /
    • 2022
  • Due to the high incidence of malignant melanoma, the establishment of in vitro models that recapitulate the tumor microenvironment is of great biological and clinical importance for tumor treatment and drug research. In this study, 3D printing technology was used to prepare GelMA/PEGDA composite scaffolds that mimic the microenvironment of human malignant melanoma cell (A375) growth and construct in vitro melanoma micro-models. The GelMA/PEGDA hybrid scaffold was tested by the mechanical property, cell live/dead assay, cell proliferation assay, cytoskeleton staining and drug loading assay. The growth of tumor cells in two- and three-dimensional culture systems and the anti-cancer effect of luteolin were evaluated using the live/dead staining method and the Cell Counting Kit-8 (CCK-8) method. The results showed a high aggregation of tumor cells on the 3D scaffold, which was suitable for long-term culture. Cytoskeleton staining and immunofluorescent protein staining were used to evaluate the degree of differentiation of tumor cells under 2D and 3D culture systems. The results indicated that 3D bioprinted scaffolds were more suitable for tumor cell expansion and differentiation, and the tumor cells were more aggressive. In addition, luteolin was time- and dose-dependent on tumor cells, and tumor cells in the 3D culture system were more resistant to the drug.

Micro/nano Tribological and Water Wetting Characteristics of Ion Beam Treated PTFE Surfaces

  • Yoon, Eui-Sung;Oh, Hyun-Jin;Yang, Seung-Ho;Kong, Hosung
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.12-16
    • /
    • 2002
  • Micro/nano tribological and water wetting characteristics of ion beam treated PTFE (polytetrafluoroethylene) surfaces were experimentally studied. The ion beam treatment was performed with a hollow cathode ion gun at different argon ion dose conditions in a vacuum chamber to modify the topography of PTFE surface. Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribe tester, SPM (scanning probe microscope), contact anglemeter and profilometer, respectively. Results showed that surface roughness increased with the argon ion dose. Water wetting angle of the ion beam treated samples increased with the ion dose, so the surface shows an ultra-hydrophobic nature. Micro-adhesion and micro-friction depend on the wetting characteristics of the PTFE samples. However, nano-tribological characteristics showed different results. The scale effect of surface topography on tribological characteristics was discussed. Also, the water wetting characteristics of modified PTFE samples were discussed in terms of the surface topographic characteristics.