• Title/Summary/Keyword: miRNA binding sites

Search Result 31, Processing Time 0.021 seconds

Upregulation of miR-760 and miR-186 Is Associated with Replicative Senescence in Human Lung Fibroblast Cells

  • Lee, Young-Hoon;Kim, Soo Young;Bae, Young-Seuk
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.620-627
    • /
    • 2014
  • We have previously shown that microRNAs (miRNAs) miR-760, miR-186, miR-337-3p, and miR-216b stimulate premature senescence through protein kinase CK2 (CK2) downregulation in human colon cancer cells. Here, we examined whether these four miRNAs are involved in the replicative senescence of human lung fibroblast IMR-90 cells. miR-760 and miR-186 were significantly upregulated in replicatively senescent IMR-90 cells, and their joint action with both miR-337-3p and miR-216b was necessary for efficient downregulation of the ${\alpha}$ subunit of CK2 ($CK2{\alpha}$) in IMR-90 cells. A mutation in any of the four miRNA-binding sequences within the $CK2{\alpha}3^{\prime}$-untranslated region (UTR) indicated that all four miRNAs should simultaneously bind to the target sites for $CK2{\alpha}$ downregulation. The four miRNAs increased senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) staining, p53 and $p21^{Cip1/WAF1}$ expression, and reactive oxygen species (ROS) production in proliferating IMR-90 cells. $CK2{\alpha}$ overexpression almost abolished this event. Taken together, the present results suggest that the upregulation of miR-760 and miR-186 is associated with replicative senescence in human lung fibroblast cells, and their cooperative action with miR-337-3p and miR-216b may induce replicative senescence through $CK2{\alpha}$ downregulation-dependent ROS generation.

Relationship among porcine lncRNA TCONS_00010987, miR-323, and leptin receptor based on dual luciferase reporter gene assays and expression patterns

  • Ding, Yueyun;Qian, Li;Wang, Li;Wu, Chaodong;Li, DengTao;Zhang, Xiaodong;Yin, Zongjun;Wang, Yuanlang;Zhang, Wei;Wu, Xudong;Ding, Jian;Yang, Min;Zhang, Liang;Shang, Jinnan;Wang, Chonglong;Gao, Yafei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.219-229
    • /
    • 2020
  • Objective: Considering the physiological and clinical importance of leptin receptor (LEPR) in regulating obesity and the fact that porcine LEPR expression is not known to be controlled by lncRNAs and miRNAs, we aim to characterize this gene as a potential target of SSC-miR-323 and the lncRNA TCONS_00010987. Methods: Bioinformatics analyses revealed that lncRNA TCONS_00010987 and LEPR have SSC-miR-323-binding sites and that LEPR might be a target of lncRNA TCONS_00010987 based on cis prediction. Wild-type and mutant TCONS_00010987-target sequence fragments and wild-type and mutant LEPR 3'-UTR fragments were generated and cloned into pmiRRB-REPORTTM-Control vectors to construct respective recombinant plasmids. HEK293T cells were co-transfected with the SSC-miR-323 mimics or a negative control with constructs harboring the corresponding binding sites and relative luciferase activities were determined. Tissue expression patterns of lncRNA TCONS_00010987, SSC-miR-323, and LEPR in Anqing six-end-white (AQ, the obese breed) and Large White (LW, the lean breed) pigs were detected by real-time quantitative polymerase chain reaction; backfat expression of LEPR protein was detected by western blotting. Results: Target gene fragments were successfully cloned, and the four recombinant vectors were constructed. Compared to the negative control, SSC-miR-323 mimics significantly inhibited luciferase activity from the wild-type TCONS_00010987-target sequence and wild-type LEPR-3'-UTR (p<0.01 for both) but not from the mutant TCONS_00010987-target sequence and mutant LEPR-3'-UTR (p>0.05 for both). Backfat expression levels of TCONS_00010987 and LEPR in AQ pigs were significantly higher than those in LW pigs (p<0.01), whereas levels of SSC-miR-323 in AQ pigs were significantly lower than those in LW pigs (p<0.05). LEPR protein levels in the backfat tissues of AQ pigs were markedly higher than those in LW pigs (p<0.01). Conclusion: LEPR is a potential target of SSC-miR-323, and TCONS_00010987 might act as a sponge for SSC-miR-323 to regulate LEPR expression.

ZNF204P is a stemness-associated oncogenic long non-coding RNA in hepatocellular carcinoma

  • Hwang, Ji-Hyun;Lee, Jungwoo;Choi, Won-Young;Kim, Min-Jung;Lee, Jiyeon;Chu, Khanh Hoang Bao;Kim, Lark Kyun;Kim, Young-Joon
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.281-286
    • /
    • 2022
  • Hepatocellular carcinoma is a major health burden, and though various treatments through much research are available, difficulties in early diagnosis and drug resistance to chemotherapy-based treatments render several ineffective. Cancer stem cell model has been used to explain formation of heterogeneous cell population within tumor mass, which is one of the underlying causes of high recurrence rate and acquired chemoresistance, highlighting the importance of CSC identification and understanding the molecular mechanisms of CSC drivers. Extracellular CSC-markers such as CD133, CD90 and EpCAM have been used successfully in CSC isolation, but studies have indicated that increasingly complex combinations are required for accurate identification. Pseudogene-derived long non-coding RNAs are useful candidates as intracellular CSC markers - factors that regulate pluripotency and self-renewal - given their cancer-specific expression and versatile regulation across several levels. Here, we present the use of microarray data to identify stemness-associated factors in liver cancer, and selection of sole pseudogene-derived lncRNA ZNF204P for experimental validation. ZNF204P knockdown impairs cell proliferation and migration/invasion. As the cytosolic ZNF204P shares miRNA binding sites with OCT4 and SOX2, well-known drivers of pluripotency and self-renewal, we propose that ZNF204P promotes tumorigenesis through the miRNA-145-5p/OCT4, SOX2 axis.

Knockdown of Archvillin by siRNA Inhibits Myofibril Assembly in Cultured Skeletal Myoblast

  • Lee, Yeong-Mi;Kim, Hyun-Suk;Choi, Jun-Hyuk;Choi, Jae-Kyoung;Joo, Young-Mi;Ahn, Seung-Ju;Min, Byung-In;Kim, Chong-Rak
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.251-261
    • /
    • 2007
  • A myofiber of skeletal muscle is composed of myofibrils, sarcolemma (plasma membrane), and constameres, which anchor the myofibrils to the sarcolemma. Achvillin is a recently identified F-actin binding muscle protein, co-isolates with dystrophin and caveolin-3 in low-density sarcolemma of striated muscle, and colocalizes with dystrophin at costameres, the specialized adhesion sites in muscle. Archvillin also binds to nebulin and localizes at myofibrillar Z-discs, the lateral boundaries of the sarcomere in muscle. However other roles of archvillin on the dynamics of myofibrillogenesis remain to be defined. The goal of this study is, by using siRNA-mediated gene silencing technique, to investigate the effect of archvillin on the dynamics of myofibrillogenesis in cell culture of a mouse skeletal myogenic cell line (C2C12), where presumptive myoblasts withdraw from the cell cycle, fuse, undergo de novo myofibrillogenesis, and differentiate into mature myotubes. The roles of archvillin in the assembly and maintenance of myofibril and during the progression of myofibrillogenesis induced in skeletal myoblast following gene silencing in the cell culture were investigated. Fluorescence microscopy demonstrated that the distribution of archvillin was changed along the course of myofibril assembly with nebulin, vinculin and F-actin and then located at Z-lines with nebulin. Fluorescence microscopy demonstrated that knockdown of mouse archvillin expression led to an impaired assembly of new myofibrillar clusters and delayed fusion and myofibrillogenesis although the mouse archvillin siRNA did not affect those expressions of archvillin binding proteins, such as nebulin and F-actin. This result is corresponded with that of RT-PCR and western blots. When the perturbed archvillin was rescued by co-transfection with GFP or Red tagged human archvillin construct, the inhibited cell fusion and myotube formation was recovered. By using siRNA technique, archvillin was found to be involved in early stage of myofibrillogenesis. Therefore, the current data suggest the idea that archvillin plays critical roles on cell fusion and dynamic myofibril assembly.

  • PDF

Expression of Nesfatin-1/NUCB2 and Its Binding Site in Mouse Ovary (생쥐 난소 내 Nesfatin-1/NUCB2 발현과 결합 부위 확인)

  • Kim, Jin-Hee;Youn, Mi-Ra;Bang, So-Young;Sim, Ji-Yeon;Kang, Hee-Rae;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.287-295
    • /
    • 2010
  • It was recently reported that nesfatin-1/NUCB2, which is secreted from the brain, controls appetite and energy metabolism. The purpose of this research was to confirm whether or not the protein and its binding site should have been expressed in the mouse reproductive organs and to know the possible effects of nesfatin-1 on the reproductive function. Using the ICR female mouse ovary and uterus, the expression of NUCB2 mRNA was confirmed with the conventional PCR and the relative amount of NUCB2 mRNA in the tissues was analyzed with real-time PCR. Immunohistochemical staining was performed using the nesfatin-1 antibody to investigate the nesfatin-1 protein expression and the biotin conjugated nesfatin-1 to confirm the binding site for nesfatin-1 in the ovary. Furthermore, in order to examine if the expression of NUCB2 mRNA in the ovary and uterus is affected by gonadotropin, its mRNA expression was analyzed after PMSG administration into mice. As a result, the expression level of NUCB2 mRNA in the ovary and the uterus was as much as the expression level in hypothalamus. As a result of the immunohistochemical staining, nesfatin-1 proteins were localized at the theca cells, the interstitial cells, and some of the luteal cells. However, the granulosa cells in the follicles did not stain. Interestingly, the oocytes in the some follicles were stained with nesfatin-1. On the other hand, nesfatin-1 protein binding sites were displayed at the theca cells and the interstitial cells near the tunica albuginea. After PMSG administration the expression level of NUCB2 mRNA was increased in the ovary and the uterus. These results demonstrate that for the first time the nesfatin-1 and its binding site were expressed in the ovary and NUCB2 mRNA expression was controlled by gonadotropin, suggesting an important role in the reproductive organs as a local regulator. Therefore, further study is needed to elucidate the functions of nesfatin-1 on the reproductive organs.

Evaluation of Genetic Variations in miRNA-Binding Sites of BRCA1 and BRCA2 Genes as Risk Factors for the Development of Early-Onset and/or Familial Breast Cancer

  • Erturk, Elif;Cecener, Gulsah;Polatkan, Volkan;Gokgoz, Sehsuvar;Egeli, Unal;Tunca, Berrin;Tezcan, Gulcin;Demirdogen, Elif;Ak, Secil;Tasdelen, Ismet
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8319-8324
    • /
    • 2014
  • Although genetic markers identifying women at an increased risk of developing breast cancer exist, the majority of inherited risk factors remain elusive. Mutations in the BRCA1/BRCA2 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intronexon boundaries, precluding the identification of mutations in noncoding and untranslated regions. Because 3' untranslated region (3'UTR) polymorphisms disrupting microRNA (miRNA) binding can be functional and can act as genetic markers of cancer risk, we aimed to determine genetic variation in the 3'UTR of BRCA1/BRCA2 in familial and early-onset breast cancer patients with and without mutations in the coding regions of BRCA1/BRCA2 and to identify specific 3'UTR variants that may be risk factors for cancer development. The 3'UTRs of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis and DNA sequencing in 100 patients from 46 BRCA1/2 families, 54 non-BRCA1/2 families, and 47 geographically matched controls. Two polymorphisms were identified. SNPs $c.^*1287C$ >T (rs12516) (BRCA1) and $c.^*105A$ >C (rs15869) (BRCA2) were identified in 27% and 24% of patients, respectively. These 2 variants were also identified in controls with no family history of cancer (23.4% and 23.4%, respectively). In comparison to variations in the 3'UTR region of the BRCA1/2 genes and the BRCA1/2 mutational status in patients, there was a statistically significant relationship between the BRCA1 gene polymorphism $c.^*1287C$ >T (rs12516) and BRCA1 mutations (p=0.035) by Fisher's Exact Test. SNP $c.^*1287C$ >T (rs12516) of the BRCA1 gene may have potential use as a genetic marker of an increased risk of developing breast cancer and likely represents a non-coding sequence variation in BRCA1 that impacts BRCA1 function and leads to increased early-onset and/or familial breast cancer risk in the Turkish population.

Molecular Docking Study of Aminoacyl-tRNA Synthetases with Ligand Molecules from Four Different Scaffolds

  • Bharatham, Nagakumar;Bharatham, Kavitha;Lee, Yu-No;Kim, Song-Mi;Lazar, Prettina;Baek, A-Young;Park, Chan-In;Eum, Hee-Sung;Ha, Hyun-Joon;Yun, Sae-Young;Lee, Won-Koo;Kim, Sung-Hoon;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.606-610
    • /
    • 2010
  • Aminoacyl-tRNA synthetases (aaRSs) play vital roles in protein biosynthesis of living organisms and are interesting antibacterial drug targets. In order to find out new inhibitor candidate molecules as antibacterial agent, the binding modes of the candidate molecules were investigated at the active sites of aaRSs by molecular docking study. The docking simulations were performed with 48 compounds from four different scaffolds into the eight different aaRSs. The results show that scaffolds 3 and 4 compounds have consistently better binding capabilities, specifically for HisRS (E. coli) and IleRS (S. aureus). The binding modes of the best compounds with the proteins were well compatible with those of two ligands in crystal structures. Therefore, we expect that the final compounds we present may have reasonable aaRS inhibitory activity.

Screening for the 3' UTR Polymorphism of the PXR Gene in South Indian Breast Cancer Patients and its Potential role in Pharmacogenomics

  • Revathidevi, Sundaramoorthy;Sudesh, Ravi;Vaishnavi, Varadharajan;Kaliyanasundaram, Muthukrishnan;MaryHelen, Kilyara George;Sukanya, Ganesan;Munirajan, Arasambattu Kannan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3971-3977
    • /
    • 2016
  • Background: Breast cancer, the commonest cancer among women in the world, ranks top in India with an incidence rate of 1,45,000 new cases and mortality rate of 70,000 women every year. Chemotherapy outcome for breast cancer is hampered due to poor response and irreversible dose-dependent cardiotoxicity which is determined by genetic variations in drug metabolizing enzymes and transporters. Pregnane X receptor (PXR), a member of the nuclear receptor superfamily, induces expression of drug metabolizing enzymes (DMEs) and transporters leading to regulation of xenobiotic metabolism. Materials and Methods: A genomic region spanning PXR 3' UTR was amplified and sequenced using genomic DNA isolated from 96 South Indian breast cancer patients. Genetic variants observed in our study subjects were queried in miRSNP to establish SNPs that alter miRNA binding sites in PXR 3' UTR. In addition, enrichment analysis was carried out to understand the network of miRNAs and PXR in drug metabolism using DIANA miRpath and miRwalk pathway prediction tools. Results: In this study, we identified SNPs rs3732359, rs3732360, rs1054190, rs1054191 and rs6438550 in the PXR 3; UTR region. The SNPs rs3732360, rs1054190 and rs1054191 were located in the binding site of miR-500a-3p, miR-532-3p and miR-374a-3p resulting in the altered PXR level due to the deregulation of post-transcriptional control and this leads to poor treatment response and toxicity. Conclusions: Genetic variants identified in PXR 3' UTR and their effects on PXR levels through post-transcriptional regulation provide a genetic basis for interindividual variability in treatment response and toxicity associated with chemotherapy.

Gene Expression Pattern during Early Embryogenesis and Transcriptional Activities of Estrogen Receptor-Related Receptor(ERR) in Sea Urchin, Strongylocentrotus nudus (둥근성게(Strongylocentrotus nudus) Estrogen Receptor-Related Receptor(ERR)의 초기 발생시 유전자 발현 패턴과 전사 활성)

  • Maeng, Se-Jung;Kim, Mi-Soon;Sohn, Young-Chang
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.249-256
    • /
    • 2009
  • The estrogen receptor-related receptors (ERRs) are a group of nuclear receptor superfamily of transcription factors. ERRs and estrogen receptors (ERs) have overlapping affinities for coactivators and DNA binding sites, but differ markedly in ligand binding and activation. The three mammalian ERR genes have been implicated in diverse physiological processes ranging from placental development to maintenance of bone density, whereas the molecular diversity, function, and regulation of ERRs in non-mammalian species are not well understood. In the present study, to investigate the involvement of ERR in transcription and embryogenesis in marine invertebrates, a cDNA encoding ERR (SnERR) was cloned from the gonad in Strongylocentrotus nudus, by polymerase chain reaction (PCR). The amino acid sequence of SnERR showed high homology with that of S. purpuratus (91%). A phylogenetic tree clearly showed that SnERR is a member of the ERR family and clustered in echinodermata group as supported by a high bootstrap value. We examined gene expression of SnERR during embryonic development of S. nudus using real-time PCR. During the embryonic development, the mRNA of ERR was significantly high levels in early development stages (4~64 cell) and larval stages. The SnERR slightly activated transcription through the classical estrogen response elements (EREs) in the presence of genistein. In addition, peroxisome proliferator-activated receptor $\gamma$ coactivator (PGC)-$1\alpha$ knwon as a coactivator of ERR enhanced the snERR-mediated transactivation, suggesting that the PGC-$1\alpha$ is a coactivator of SnERR.

  • PDF

Human transcription factor YY1 could upregulate the HIV-1 gene expression

  • Yu, Kyung Lee;Jung, Yu Mi;Park, Seong Hyun;Lee, Seong Deok;You, Ji Chang
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.248-253
    • /
    • 2020
  • Gene expression in HIV-1 is regulated by the promoters in 5' long-terminal repeat (LTR) element, which contain multiple DNA regulatory elements that serve as binding sites for cellular transcription factors. YY1 could repress HIV-1 gene expression and latent infection. Here, however, we observed that virus production can be increased by YY1 over-expression and decreased under YY1 depleted condition by siRNA treatment. To identify functional domain(s) of YY1 activation, we constructed a number of YY1 truncated mutants. Our data show that full-length YY1 enhances the viral transcription both through U3 and U3RU5 promoters. Moreover, the C-terminal region (296-414 residues) of YY1 is responsible for the transcriptional upregulation, which could be enhanced further in the presence of the viral Tat protein. The central domain of YY1 (155-295 residues) does not affect LTR activity but has a negative effect on HIV-1 gene expression. Taken together, our study shows that YY1 could act as a transcriptional activator in HIV-1 replication, at least in the early stages of infection.