• Title/Summary/Keyword: miRNA

Search Result 1,563, Processing Time 0.029 seconds

Comparative co-expression analysis of RNA-Seq transcriptome revealing key genes, miRNA and transcription factor in distinct metabolic pathways in diabetic nerve, eye, and kidney disease

  • Asmy, Veerankutty Subaida Shafna;Natarajan, Jeyakumar
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.26.1-26.19
    • /
    • 2022
  • Diabetes and its related complications are associated with long term damage and failure of various organ systems. The microvascular complications of diabetes considered in this study are diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. The aim is to identify the weighted co-expressed and differentially expressed genes (DEGs), major pathways, and their miRNA, transcription factors (TFs) and drugs interacting in all the three conditions. The primary goal is to identify vital DEGs in all the three conditions. The overlapped five genes (AKT1, NFKB1, MAPK3, PDPK1, and TNF) from the DEGs and the co-expressed genes were defined as key genes, which differentially expressed in all the three cases. Then the protein-protein interaction network and gene set linkage analysis (GSLA) of key genes was performed. GSLA, gene ontology, and pathway enrichment analysis of the key genes elucidates nine major pathways in diabetes. Subsequently, we constructed the miRNA-gene and transcription factor-gene regulatory network of the five gene of interest in the nine major pathways were studied. hsa-mir-34a-5p, a major miRNA that interacted with all the five genes. RELA, FOXO3, PDX1, and SREBF1 were the TFs interacting with the major five gene of interest. Finally, drug-gene interaction network elucidates five potential drugs to treat the genes of interest. This research reveals biomarker genes, miRNA, TFs, and therapeutic drugs in the key signaling pathways, which may help us, understand the processes of all three secondary microvascular problems and aid in disease detection and management.

Down-regulation of miR-34a Expression in Cervical Intraepithelial Neoplasia with Human Papillomavirus Infection and Its Relationship with p53 Expression

  • Lee, Kyung Eun
    • Biomedical Science Letters
    • /
    • v.19 no.4
    • /
    • pp.348-352
    • /
    • 2013
  • microRNAs (miRNAs) play pivotal roles in controlling cell proliferation and differentiation. miRNA expression in human is becoming recognized as a new molecular mechanism of carcinogenesis. microRNA-34a (miR-34a), a member of the p53 network, was found to be regulated in multiple types of tumor. The purpose of this study was to define roles of miR-34a expression in cervical intraepithelial neoplasia with human papillomavirus infection, and its relationship with p53 protein expression. This study was performed to analyze expression of miR-34a by using qRT-PCR, and to evaluate p53 protein expression by using immunohistochemistry in 40 cases. Down-regulation of miR-34a expression was detected in 27 (67.5%) out of 40 cases and Immunoreactivity for p53 was found in 17 (42.5%) out of 40 cases. Nineteen (82.6%) of the 23 cases with a negative p53 expression showed a down-regulation miR-34a expression, there was a significant associations between miR-34a and p53 protein expression (P=0.04). These results suggest that miRNA-34a expression tend to be reduced depending on the advanced histologic grade, and down-regulation of miR-34a expression might be associated with inactivation of p53 protein expression by human papillomavirus infection.

Association of the miRNA146a rs2910164 C>G Polymorphism with Head and Neck Cancer Risk: A Meta-analysis

  • Chen, Xiang-Jun;Zhou, Tao-You;Chen, Min;Li, Nian;Liu, Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3871-3874
    • /
    • 2015
  • Objective: To investigate any association of the miRNA146a rs2910164 C>G polymorphism with head and neck cancer risk. Materials and Methods: The Medline, PubMed, PUBMED, EMBASE, Web of Science, WanFang and CNKI databases were searched and a meta-analysis was conducted using RevMan 5.2 software. Results: After searching and evaluating the literature, a total seven papers involving 2,766 patients with head and neck cancer and 6,603 healthy controls were included into this meta analysis. The results showed that there were no significant differences between patients and healthy controls overall for the miRNA rs2910164 C>G gene polymorphism (dominant model:OR=0.78, 95%CI:0.58-1.04, P=0.09; recessive model:OR=0.86, 95%CI:0.67-1.12, P=0.27;GG:CC:OR=0.75, 95%CI:0.52-1.08, P=0.12;GC:CC:OR=0.79, 95%CI:0.60-1.04, P=0.10). However, a significant association of miRNA rs2910164 C>G gene polymorphism with Chinese head and neck cancer risk was noted, limited to the dominant model (OR=0.68, 95%CI:0.50-0.95, P=0.02;GG:CC:OR=0.62, 95%CI:0.42-0.92, P=0.02;GC:CC:OR=0.72, 95%CI:0.520.99, P=0.04). Conclusions: miRNA146a rs2910164 C>G polymorphism is not associated with head and neck cancer risk in general, but tehre may be link in Chinese.

MicroRNAs: Biogenesis, Roles for Carcinogenesis and as Potential Biomarkers for Cancer Diagnosis and Prognosis

  • Kavitha, Nowroji;Vijayarathna, Soundararajan;Jothy, Subramanion Lachumy;Oon, Chern Ein;Chen, Yeng;Kanwar, Jagat Rakesh;Sasidharan, Sreenivasan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7489-7497
    • /
    • 2014
  • MicroRNAs (miRNAs) are short non-coding RNAs of 20-24 nucleotides that play important roles in carcinogenesis. Accordingly, miRNAs control numerous cancer-relevant biological events such as cell proliferation, cell cycle control, metabolism and apoptosis. In this review, we summarize the current knowledge and concepts concerning the biogenesis of miRNAs, miRNA roles in cancer and their potential as biomarkers for cancer diagnosis and prognosis including the regulation of key cancer-related pathways, such as cell cycle control and miRNA dysregulation. Moreover, microRNA molecules are already receiving the attention of world researchers as therapeutic targets and agents. Therefore, in-depth knowledge of microRNAs has the potential not only to identify their roles in cancer, but also to exploit them as potential biomarkers for cancer diagnosis and identify therapeutic targets for new drug discovery.

Identification and Expression of Equine MER-Derived miRNAs

  • Gim, Jeong-An;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.262-270
    • /
    • 2017
  • MicroRNAs (miRNAs) are single-stranded, small RNAs (21-23 nucleotides) that function in gene silencing and translational inhibition via the RNA interference mechanism. Most miRNAs originate from host genomic regions, such as intergenic regions, introns, exons, and transposable elements (TEs). Here, we focused on the palindromic structure of medium reiteration frequencies (MERs), which are similar to precursor miRNAs. Five MER consensus sequences (MER5A1, MER53, MER81, MER91C, and MER117) were matched with paralogous transcripts predicted to be precursor miRNAs in the horse genome (equCab2) and located in either intergenic regions or introns. The MER5A1, MER53, and MER91C sequences obtained from RepeatMasker were matched with the eca-miR-544b, eca-miR-1302, and eca-miR-652 precursor sequences derived from Ensembl transcript database, respectively. Each precursor form was anticipated to yield two mature forms, and we confirmed miRNA expression in six different tissues (cerebrum, cerebellum, lung, spleen, adrenal gland, and duodenum) of one thoroughbred horse. MER5A1-derived miRNAs generally showed significantly higher expression in the lung than in other tissues. MER91C-derived miRNA-5p also showed significantly higher expression in the duodenum than in other tissues (cerebellum, lung, spleen, and adrenal gland). The MER117-overlapped expressed sequence tag generated polycistronic miRNAs, which showed higher expression in the duodenum than other tissues. These data indicate that horse MER transposons encode miRNAs that are expressed in several tissues and are thought to have biological functions.

In Silico Study of miRNA Based Gene Regulation, Involved in Solid Cancer, by the Assistance of Argonaute Protein

  • Rath, Surya Narayan;Das, Debasrita;Konkimalla, V Badireenath;Pradhan, Sukanta Kumar
    • Genomics & Informatics
    • /
    • v.14 no.3
    • /
    • pp.112-124
    • /
    • 2016
  • Solid tumor is generally observed in tissues of epithelial or endothelial cells of lung, breast, prostate, pancreases, colorectal, stomach, and bladder, where several genes transcription is regulated by the microRNAs (miRNAs). Argonaute (AGO) protein is a family of protein which assists in miRNAs to bind with mRNAs of the target genes. Hence, study of the binding mechanism between AGO protein and miRNAs, and also with miRNAs-mRNAs duplex is crucial for understanding the RNA silencing mechanism. In the current work, 64 genes and 23 miRNAs have been selected from literatures, whose deregulation is well established in seven types of solid cancer like lung, breast, prostate, pancreases, colorectal, stomach, and bladder cancer. In silico study reveals, miRNAs namely, miR-106a, miR-21, and miR-29b-2 have a strong binding affinity towards PTEN, TGFBR2, and VEGFA genes, respectively, suggested as important factors in RNA silencing mechanism. Furthermore, interaction between AGO protein (PDB ID-3F73, chain A) with selected miRNAs and with miRNAs-mRNAs duplex were studied computationally to understand their binding at molecular level. The residual interaction and hydrogen bonding are inspected in Discovery Studio 3.5 suites. The current investigation throws light on understanding miRNAs based gene silencing mechanism in solid cancer.

Association of miR-193b Down-regulation and miR-196a up-Regulation with Clinicopathological Features and Prognosis in Gastric Cancer

  • Mu, Yong-Ping;Tang, Song;Sun, Wen-Jie;Gao, Wei-Min;Wang, Mao;Su, Xiu-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8893-8900
    • /
    • 2014
  • Dysregulated expression of microRNAs (miRNAs) has been shown to be closely associated with tumor development, progression, and carcinogenesis. However, their clinical implications for gastric cancer remain elusive. To investigate the hypothesis that genome-wide alternations of miRNAs differentiate gastric cancer tissues from those matched adjacent non-tumor tissues (ANTTs), miRNA arrays were employed to examine miRNA expression profiles for the 5-pair discovery stage, and the quantitative real-time polymerase chain reaction (qRTPCR) was applied to validate candidate miRNAs for 48-pair validation stage. Furthermore, the relationship between altered miRNA and clinicopathological features and prognosis of gastric cancer was explored. Among a total of 1,146 miRNAs analyzed, 16 miRNAs were found to be significantly different expressed in tissues from gastric cancer compared to ANTTs (p<0.05). qRT-PCR further confirmed the variation in expression of miR-193b and miR-196a in the validation stage. Down-expression of miR-193b was significantly correlated with Lauren type, differentiation, UICC stage, invasion, and metastasis of gastric cancer (p<0.05), while over-expression of miR-196a was significantly associated with poor differentiation (p=0.022). Moreover, binary logistic regression analysis demonstrated that the UICC stage was a significant risk factor for down-expression of miR-193b (adjusted OR=8.69; 95%CI=1.06-56.91; p=0.043). Additionally, Kaplan-Meier survival curves indicated that patients with a high fold-change of down-regulated miR-193b had a significantly shorter survival time (n=19; median survival=29 months) compared to patients with a low fold-change of down-regulated miR-193b (n=29; median survival=54 months) (p=0.001). Overall survival time of patients with a low fold-change of up-regulated miR-196a (n=27; median survival=52 months) was significantly longer than that of patients with a high fold-change of up-regulated miR-196a (n=21; median survival=46 months) (p=0.003). Hence, miR-193b and miR-196a may be applied as novel and promising prognostic markers in gastric cancer.

MicroRNAs in Human Diseases: From Autoimmune Diseases to Skin, Psychiatric and Neurodegenerative Diseases

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • v.11 no.5
    • /
    • pp.227-244
    • /
    • 2011
  • MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their target messenger RNAs (mRNAs). Recent studies have clearly demonstrated that miRNAs play critical roles in several biologic processes, including cell cycle, differentiation, cell development, cell growth, and apoptosis and that miRNAs are highly expressed in regulatory T (Treg) cells and a wide range of miRNAs are involved in the regulation of immunity and in the prevention of autoimmunity. It has been increasingly reported that miRNAs are associated with various human diseases like autoimmune disease, skin disease, neurological disease and psychiatric disease. Recently, the identification of miRNAs in skin has added a new dimension in the regulatory network and attracted significant interest in this novel layer of gene regulation. Although miRNA research in the field of dermatology is still relatively new, miRNAs have been the subject of much dermatological interest in skin morphogenesis and in regulating angiogenesis. In addition, miRNAs are moving rapidly center stage as key regulators of neuronal development and function in addition to important contributions to neurodegenerative disorder. Moreover, there is now compelling evidence that dysregulation of miRNA networks is implicated in the development and onset of human neruodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Tourette's syndrome, Down syndrome, depression and schizophrenia. In this review, I briefly summarize the current studies about the roles of miRNAs in various autoimmune diseases, skin diseases, psychoneurological disorders and mental stress.

Modulation of autophagy by miRNAs

  • Kim, Yunha;Lee, Junghee;Ryu, Hoon
    • BMB Reports
    • /
    • v.48 no.7
    • /
    • pp.371-372
    • /
    • 2015
  • MicroRNAs (miRNAs) can regulate the expression of genes that are involved in multiple cellular pathways. However, their targets and mechanism of action associated with the autophagy pathway are not fully investigated yet. EWSR1 (EWS RNA-Binding Protein 1/Ewing Sarcoma Break Point Region 1) gene encodes a RNA/DNA binding protein that is ubiquitously expressed and plays roles in numerous cellular processes. Recently, our group has shown that EWSR1 deficiency leads to developmental failure and accelerated senescence via processing of miRNAs, but its role in the regulation of autophagy remains elusive. In this context, we further investigated and found that EWSR1 deficiency triggers the activation of the DROSHA-mediated microprocessor complex and increases the levels of miR125a and miR351, which directly target Uvrag. Interestingly, the miR125a- and miR351-targeted reduction of Uvrag led to the inhibition of autophagy in both ewsr1 knockout (KO) MEFs and ewsr1 KO mice. In summary, our study demonstrates that EWSR1 is associated with the posttranscriptional regulation of Uvrag via miRNA processing. The regulation of autophagy pathway in miRNAs-Uvrag-dependent manner provides a novel mechanism of EWSR1 deficiency-related cellular dysfunction. [BMB Reports 2015; 48(7): 371-372]

Analysis of microRNA expression profiles during the cell cycle in synchronized HeLa cells

  • Zhou, Jue-Yu;Ma, Wen-Li;Liang, Shuang;Zeng, Ye;Shi, Rong;Yu, Hai-Lang;Xiao, Wei-Wei;Zheng, Wen-Ling
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.593-598
    • /
    • 2009
  • Cell cycle progression is regulated by both transcriptional and post-transcriptional mechanisms. MicroRNAs (miRNAs) emerge as a new class of small non-coding RNA regulators of cell cycle as recent evidence suggests. It is hypothesized that expression of specific miRNAs oscillates orderly along with cell cycle progression. However, the oscillated expression patterns of many candidate miRNAs have yet to be determined. Here, we describe miRNA expression profiling in double-thymidine synchronized HeLa cells as cell cycle progresses. Twenty-five differentially expressed miRNAs were classified into five groups based on their cell cycle-dependent expression patterns. The cyclic expression of six miRNAs (miR-221, let-7a, miR-21, miR-34a, miR-24, miR-376b) was validated by real-time quantitative RT-PCR (qRT-PCR). These results suggest that specific miRNAs, along with other key factors are required for maintaining and regulating proper cell cycle progression. The study deepens our understanding on cell cycle regulation.