Browse > Article
http://dx.doi.org/10.7314/APJCP.2014.15.18.7489

MicroRNAs: Biogenesis, Roles for Carcinogenesis and as Potential Biomarkers for Cancer Diagnosis and Prognosis  

Kavitha, Nowroji (Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia)
Vijayarathna, Soundararajan (Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia)
Jothy, Subramanion Lachumy (Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia)
Oon, Chern Ein (Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia)
Chen, Yeng (Dental Research & Training Unit, and Oral Cancer Research and Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya)
Kanwar, Jagat Rakesh (Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University)
Sasidharan, Sreenivasan (Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.15, no.18, 2014 , pp. 7489-7497 More about this Journal
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs of 20-24 nucleotides that play important roles in carcinogenesis. Accordingly, miRNAs control numerous cancer-relevant biological events such as cell proliferation, cell cycle control, metabolism and apoptosis. In this review, we summarize the current knowledge and concepts concerning the biogenesis of miRNAs, miRNA roles in cancer and their potential as biomarkers for cancer diagnosis and prognosis including the regulation of key cancer-related pathways, such as cell cycle control and miRNA dysregulation. Moreover, microRNA molecules are already receiving the attention of world researchers as therapeutic targets and agents. Therefore, in-depth knowledge of microRNAs has the potential not only to identify their roles in cancer, but also to exploit them as potential biomarkers for cancer diagnosis and identify therapeutic targets for new drug discovery.
Keywords
Cell cycle control; cancer; miRNA dysregulation; oncogene;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Bueno MJ, Malumbres M (2011). MicroRNAs and the cell cycle. Biochim Biophys Acta, 1812, 592-601.   DOI
2 Chang CJ, Chao CH, Xia W, et al (2011). p53 regulates epithelialmesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol, 13, 317-23.   DOI
3 Calin GA, Cimmino A, Fabbri M, et al (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA, 105, 5166-71.   DOI
4 Calin GA, Croce CM (2006). MicroRNA signatures in human cancers. Nat Rev Cancer, 6, 857-66.   DOI   ScienceOn
5 Carthew RW, Sontheimer EJ (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136, 642-55.   DOI   ScienceOn
6 Corsini LR, Bronte G, Terrasi M, et al (2012). The role of microRNAs in cancer: diagnostic and prognostic biomarkers and targets of therapies. Expert Opin Ther Tar, 16, 103-9.   DOI
7 Cortez MA, Welsh JW, Calin GA (2012). Circulating microRNAs as noninvasive biomarkers in breast cancer. Rec Res Cancer Res, 195, 151-61.   DOI
8 Croce CM (2013). Ultraconserved regions encoding ncRNAs. US Patent App. 2013, 13/910,410.
9 Croce CM, Liu CG, Calin GA, Sevignani C (2010). Diagnosis and treatment of cancers with microRNA located in or near cancer associated chromosomal features. Patents, US20100234241 A1.
10 Croce CM: Causes and consequences of microRNA dysregulation in cancer (2009). Nat Rev Genetics, 10, 704-14.   DOI   ScienceOn
11 Deng G, Sui G (2013). Noncoding RNA in oncogenesis: a new era of identifying key players. Int J Mol Sci, 14, 18319-49.   DOI
12 Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005). Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 123, 631-40.   DOI   ScienceOn
13 Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res, 36, 154-8.   DOI   ScienceOn
14 Han J, Pedersen JS, Kwon SC, et al (2009). Posttranscriptional crossregulation between Drosha and DGCR8. Cell, 136, 75-84.   DOI   ScienceOn
15 Hu Z, Chen X, Zhao Y, et al (2010). Serum MicroRNA signatures identified in a genome-wide serum MicroRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol, 28, 1721-6.   DOI   ScienceOn
16 Hanke M, Hoefig K, Merz H, et al (2010). A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. In: Urologic Oncology: Seminars and Original Investigations, 11, 655-61.
17 He L, He X, Lowe SW, Hannon GJ (2007). microRNAs join the p53 network-another piece in the tumour-suppression puzzle. Nat Rev Cancer, 7, 819-22.   DOI   ScienceOn
18 Heneghan HM, Miller N, Kerin MJ (2010). MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol, 10, 543-50.   DOI   ScienceOn
19 Iliopoulos D, Lindahl-Allen M, Polytarchou C, et al (2010). Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell, 39, 761-72.   DOI
20 Inui M, Martello G, Piccolo S (2010). MicroRNA control of signal transduction. Nat Rev Mol Cell Biol, 11, 252-63.   DOI   ScienceOn
21 Melo SA, Moutinho C, Ropero S, et al (2010). A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer cell, 18, 303-15.   DOI
22 Lujambio A, Lowe SW (2012). The microcosmos of cancer. Nature, 482, 347-55.   DOI
23 Malumbres M, Barbacid M (2001). Milestones in cell division: to cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer, 1, 222-31.   DOI
24 Martinez NJ, Gregory RI (2013). Argonaute2 expression is post-transcriptionally coupled to microRNA abundance. RNA, 19, 605-12.   DOI
25 Mcbride O, Merry D, Givol D (1986). The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci U.S.A, 83, 130-4.   DOI   ScienceOn
26 Melo SA, Esteller M (2011). A precursor microRNA in a cancer cell nucleus: get me out of here! Cell Cycle, 10, 922-5.   DOI
27 Melo SA, Esteller M (2011). Dysregulation of microRNAs in cancer: playing with fire. FEBS Letters, 585, 2087-99.   DOI
28 Melo SA, Ropero S, Moutinho C, et al (2009). A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genetics, 41, 365-70.   DOI
29 Meng F, Henson R, Wehbe-Janek H, et al (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 133, 647-58.   DOI   ScienceOn
30 Mitchell PS, Tewari M (2010). Circulating microRNAs in cancer. In Kikuchi Y. and Rykova EY. (Eds.), Nucleic acids and molecular biology series: extracellular nucleic acids, Springer, 129-46.
31 Khan N, Cheng J, Pezacki JP, Berezovski MV (2011). Quantitative analysis of microRNA in blood serum with protein-facilitated affinity capillary electrophoresis. Anal Chem, 83, 6196-01.   DOI
32 Iorio MV, Croce CM (2012). MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med, 4, 143-59.   DOI
33 Iorio MV, Croce CM (2012). microRNA involvement in human cancer. Carcinogenesis, 33, 1126-33.   DOI
34 Iorio MV, Ferracin M, Liu CG, et al (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65, 7065-70.   DOI   ScienceOn
35 Jansson MD, Lund AH (2012). MicroRNA and cancer. Mol Oncol, 6, 590-610.   DOI
36 Josephine WD, Cui M, Shibata R, Cheng L, Zhang DY (2013). Diagnostic methodology and technology. In Molecular Genetic Pathology, Cheng, Liang, Zhang, David Y., Eble, John N. (Eds.), Springer, 2nd ed., XXI, 1136 p.
37 Karreth FA, Tay Y, Perna D, et al (2011). In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAFinduced mouse model of melanoma. Cell, 147, 382-95.   DOI
38 Kim VN, Han J, Siomi MC (2009). Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 10, 126-39.   DOI   ScienceOn
39 Kobayashi E, Hornicek FJ, Duan Z (2012). MicroRNA involvement in osteosarcoma. Clin Sarcoma Res, 12, 359-739.
40 Kong YW, Ferland-Mccollough D, Jackson TJ, Bushell M (2012). microRNAs in cancer management. The Lancet Oncol, 13, 249-258.   DOI   ScienceOn
41 Krell J, Frampton AE, Colombo T, et al (2013). The p53 miRNA interactome and its potential role in the cancer clinic. Epigenomics, 5, 417-28.   DOI
42 Ofir M, Hacohen D, Ginsberg D (2011). MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol Cancer Res, 9, 440-7.   DOI
43 Mollaie HR, Monavari SH, Arabzadeh SA, et al (2013). RNAi and miRNA in viral infections and cancers. Asian Pac J Cancer Prev, 14, 7045-56.   DOI   ScienceOn
44 Nana-Sinkam SP, Croce CM (2011). MicroRNAs as therapeutic targets in cancer. Transl Res, 157, 216-25.   DOI   ScienceOn
45 Nishida N, Mimori K, Mori M, Calin GA (2013). EGFR gets in the way of microRNA biogenesis. Cell Research, 23, 1157-8.   DOI
46 Ramshankar V, Krishnamurthy A (2013). Lung cancer detection by screening - presenting circulating miRNAs as a promising next generation biomarker breakthrough. Asian Pac J Cancer Prev, 14, 2167-72.   과학기술학회마을   DOI   ScienceOn
47 Orang AV, Safaralizadeh R, Hosseinpour Feizi MA (2014). Insights into the diverse roles of miR-205 in human cancers. Asian Pac J Cancer Prev, 15, 577-583.   DOI   ScienceOn
48 Parasramka MA, Ho E, Williams DE, Dashwood RH (2012). MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Mol Carcinogen, 51, 213-30.   DOI
49 Petrocca F, Visone R, Onelli MR, et al (2008). E2F1-regulated microRNAs impair TGF$\beta$-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell, 13, 272-86.   DOI   ScienceOn
50 Ruby JG, Jan CH, Bartel DP (2007). Intronic microRNA precursors that bypass Drosha processing. Nature, 448, 83-6.   DOI   ScienceOn
51 Shen J, Xia W, Khotskaya YB, et al (2013). EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature, 497, 383-7.   DOI
52 Saito Y, Liang G, Egger G, et al (2006). Specific activation of microRNA-127 with downregulation of the proto-oncogene by chromatin-modifying drugs in human cancer cells. Cancer Cell, 9, 435-43.   DOI   ScienceOn
53 Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011). A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell, 146, 353-8.   DOI   ScienceOn
54 Sanchez-Diaz PC, Hsiao TH, Chang JC, et al (2013). Deregulated microRNAs in pediatric cancer stem cells target pathways involved in cell proliferation, cell cycle and development. PloS One, 8, 61622.   DOI
55 Su X, Chakravarti D, Cho MS, et al (2010). TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature, 467, 986-90.   DOI   ScienceOn
56 Streichert T, Otto B, Lehmann U (2011). MicroRNA profiling using fluorescence-labeled beads: data acquisition and processing. Methods Mol Biol, 676, 253-68.   DOI
57 Streichert T, Otto B, Lehmann U (2012). microRNA expression profiling in archival tissue specimens: methods and data processing. Mol Biotechnol, 50, 159-69.   DOI
58 Su X, Xing J, Wang Z, et al (2013). microRNAs and ceRNAs:RNA networks in pathogenesis of cancer. Chin J Cancer Res, 25, 235-9.
59 Suzuki HI, Yamagata K, Sugimoto K, et al (2009). Modulation of microRNA processing by p53. Nature, 460, 529-33.   DOI   ScienceOn
60 Taby R, Issa JPJ (2010). Cancer epigenetics. CA Cancer J Clin, 60, 376-92.   DOI
61 Vasudevan S, Tong Y, Steitz JA (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931-4.   DOI   ScienceOn
62 Toyota M, Suzuki H, Sasaki Y, et al (2008). Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res, 68, 4123-32.   DOI   ScienceOn
63 Van Kouwenhove M, Kedde M, Agami R (2011). MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer, 11, 644-56.   DOI   ScienceOn
64 Varambally S, Cao Q, Mani RS, et al (2008). Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 322, 1695-9.   DOI   ScienceOn
65 Volinia S, Calin GA, Liu CG, et al (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA, 103, 2257-61.   DOI   ScienceOn
66 Volinia S, Galasso M, Sana ME, et al (2012). Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci USA, 109, 3024-9.   DOI
67 Wan SM, Lv F, Guan T (2012). Identification of genes and microRNAs involved in ovarian carcinogenesis. Asian Pac J Cancer Prev, 13, 3997-4000.   DOI   ScienceOn
68 Wong KY, Yu L, Chim CS (2011). DNA methylation of tumor suppressor miRNA genes: a lesson from the miR-34 family. Epigenomics, 3, 83-92.   DOI
69 Wynendaele J, Bohnke A, Leucci E, et al (2010). An illegitimate microRNA target site within the 3'UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Res, 70, 9641-9.   DOI
70 Xu L, Dai WQ, Xu XF, et al (2012). Effects of multiple-target anti-microRNA antisense oligodeoxyribonucleotides on proliferation and migration ofgastric cancer cells. Asian Pac J Cancer Prev, 13, 3203-7.   DOI   ScienceOn
71 Zenz T, Mohr J, Eldering E, et al (2009). miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood, 113, 3801-8.   DOI   ScienceOn
72 Zhao SF, Zhang X, Zhang XJ, et al (2014). Induction of MicroRNA-9 mediates cytotoxicity of curcumin against SKOV3 ovarian cancer cells. Asian Pac J Cancer Prev, 15, 3363-8.   과학기술학회마을   DOI
73 Bhayani MK, Calin GA, Lai SY (2012). Functional relevance of miRNA* sequences in human disease. Mutat Res-Fund Mol M, 731, 14-9.   DOI
74 Bartel DP (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215-33.   DOI   ScienceOn
75 Beitzinger M, Meister G (2010). MicroRNAs: from decay to decoy. Cell, 140, 612-14.   DOI
76 Berezikov E, Guryev V, Van De Belt J, et al (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell, 120, 21-4.   DOI   ScienceOn
77 Farooqi AA, Qureshi MZ, Coskunpinar E, et al (2014). miR-421, miR-155 and miR-650: Emerging trends of regulation of cancer and apoptosis. Asian Pac J Cancer Prev, 15, 1909-12.   과학기술학회마을   DOI   ScienceOn
78 Duan W, Gao L, Wu X, et al (2010). MicroRNA-34a is an important component of PRIMA-1-induced apoptotic network in human lung cancer cells. Int J Cancer, 127, 313-20.
79 Fornari F, Gramantieri L, Ferracin M, et al (2008). MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene, 27, 5651-61.   DOI   ScienceOn
80 Farazi TA, Hoell JI, Morozov P, Tuschl T (2013). MicroRNAs in human cancer. Adv Exp Med Biol, 774, 1-20.   DOI   ScienceOn
81 Fink SP, Kishore Guda D(2013) Application of next-generation sequencing in RNA biomarker discovery in cancer research, In next generation sequencing in cancer research, Wu, Wei, Choudhry, Hani (Eds.), Springer, 1, 383.
82 Frankel LB, Christoffersen NR, Jacobsen A, et al (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Bio Chem, 283, 1026-33.   DOI   ScienceOn
83 Garzon R, Heaphy CE, Havelange V, et al (2009). MicroRNA 29b functions in acute myeloid leukemia. Blood, 114, 5331-41.   DOI   ScienceOn
84 Garzon R, Marcucci G, Croce CM (2010). Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discovery, 9, 775-89.   DOI   ScienceOn
85 Ghildiyal M, Zamore PD (2009). Small silencing RNAs: an expanding universe. Nat Rev Genet, 10, 94-108.   DOI   ScienceOn
86 Lin C, Huang F, Zhang Y, Tuokan T, Kuerban G. (2014). Roles of MiR-101 and its target gene cox-2 in early diagnosis of cervical cancer in Uygur women. Asian Pac J Cancer Prev, 15, 45-8.   DOI   ScienceOn
87 Krol J, Loedige I, Filipowicz W (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 11, 597-610.
88 Kumar MS, Pester RE, Chen CY, et al (2009). Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev, 23, 2700-4.   DOI
89 Lawrie CH (2008). MicroRNA expression in lymphoid malignancies: new hope for diagnosis and therapy? J Cell Mol Med, 12, 1432-44.   DOI
90 Lhakhang TW, Chaudhry M (2012). Current approaches to micro-RNA analysis and target gene prediction. J App Gene, 53, 149-58.   DOI
91 Lim LP, Lau NC, Garrett-Engele P, et al (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769-73.   DOI   ScienceOn
92 Link A, Balaguer F, Shen Y, et al (2010). MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidem Biomar Prev, 19, 1766-74.   DOI   ScienceOn
93 Liu R, Zhang C, Hu Z, et al (2011). A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer, 47, 784-91.   DOI   ScienceOn
94 Lopez-Serra P, Esteller M (2011). DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene, 31, 1609-22.
95 Lujambio A, Calin GA, Villanueva A, et al (2008). A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA, 105, 13556-61.   DOI
96 Lee RC, Feinbaum, RL, d Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843-54.   DOI   ScienceOn
97 Baumhoer D, Zillmer S, Unger K, et al (2012). MicroRNA profiling with correlation to gene expression revealed the oncogenic miR-17-92 cluster to be up-regulated in osteosarcoma. Cancer Genet, 205, 212-19.   DOI
98 Fabbri M, Garzon R, Cimmino A, et al (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA, 104, 15805-10.   DOI   ScienceOn
99 Iorio MV, Casalini P, Piovan C, Braccioli L, Tagliabue E (2012). Current and future developments in cancer therapy research: mirnas as new promising targets or tools. In Biotargets of Cancer in Current Clinical Practice, Bologna, M. (Ed.), Springer. XVI, 563.
100 Reinhart BJ, Slack FJ, Basson M, et al (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901-6.   DOI   ScienceOn
101 Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S (2008). The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol, 18, 89-102.   DOI