• Title/Summary/Keyword: miR-10b

Search Result 394, Processing Time 0.026 seconds

Screening of MicroRNA in Patients with Esophageal Cancer at Same Tumor Node Metastasis Stage with Different Prognoses

  • Zhao, Bao-Sheng;Liu, Shang-Guo;Wang, Tian-Yun;Ji, Ying-Hua;Qi, Bo;Tao, Yi-Peng;Li, Han-Chen;Wu, Xiang-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.139-143
    • /
    • 2013
  • Patients at the same pathological stage of esophageal cancer (EC) that received the same surgical therapy by the same surgeon may have distinct prognoses. The current study aimed to explore the possibility of differentially-expressed microRNAs (miRNAs) underlying this phenomenon. Samples were collected from EC patients at the same tumor node metastasis (TNM) stage but with different prognoses. Paracancerous normal tissues were taken as controls. The specimens were histopathologically analyzed. Differentially-expressed miRNAs were analyzed using real-time quantitative reverse transcription polymerase chain reaction. Compared with patients with poor prognosis, those with good prognosis exhibited 88 two-fold or more than two-fold increased miRNA fragments and 4 half-decreased miRNAs. The most noticeably up-regulated miRNAs included hsa-miR-31, hsa-miR-196b, hsa-miR-652, hsa-miR-125a-5p, hsa-miR-146b, hsa-miR-200c, hsa-miR-23b, hsa-miR-29a, hsa-miR-186, hsa-miR-205, hsa-miR-376a, hsa-miR-410, hsa-miR-532-3p, and hsa-miR-598, whereas the most significantly-downregulated miRNAs were hsa-let-7e, hsa-miR-130b, and hsa-miR-103. EC patients at same TNM stage but with different prognoses show differentially-expressed miRNAs.

Profiling of Salivary Exosomal Micro RNAs in Burning Mouth Syndrome Patients

  • Kim, Kyun-Yo;Byun, Jin-Seok;Jung, Jae-Kwang;Choi, Jae-Kap
    • Journal of Oral Medicine and Pain
    • /
    • v.44 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • Purpose: The exact causes of burning mouth syndrome (BMS) is unclear so far. There are many studies to elucidate the relation between oral disease and genetic predisposition. In this study, we first tried to investigate salivary exosomal genetic components that could play an important role for diagnosing and elucidating the progression of BMS. Methods: We compared salivary exosomal micro RNAs (miRNAs) of BMS Patients to those of control using next generation sequencing (NGS). Unstimulated whole saliva from 15 patients with BMS and 10 control subjects were divided into two sets. Isolated exosomes and their total RNAs were subject to NGS for the screening of miRNAs. Results: There were up-regulated 10 exosomal miRNAs (hsa-miR-1273h-5p, hsa-miR-1273a, hsa-miR-1304-3p, hsa-miR-4449, hsa-miR-1285-3p, hsa-miR-6802-5p, hsa-miR-1268a, hsa-miR-1273d, hsa-miR-1273f, and hsa-miR-423-5p) and down-regulated 18 exosomal miRNAs (hsa-miR-27b-3p, hsa-miR-16-5p, hsa-miR-186-5p, hsa-miR-142-3p, hsa-miR-141-3p, hsa-miR-150-5p, hsa-miR-374a-5p, hsa-miR-93-5p, hsa-miR-29c-3p, hsa-miR-29a-3p, hsa-miR-148a-3p, hsa-miR-22-3p, hsa-miR-27a-3p, hsa-miR-424-5p, hsa-miR-19b-3p, hsa-miR-99a-5p, hsa-miR-548d-3p, and hsa-miR-19a-3p) in BMS patients comparing with those of control subjects. Conclusions: We show that there are 28 differential expression of miRNAs between the patients with BMS and those of control subjects. The specific function of indicated miRNAs should be further elucidated.

miR-101-3p/Rap1b signal pathway plays a key role in osteoclast differentiation after treatment with bisphosphonates

  • Li, Jie;Li, You;Wang, Shengjie;Che, Hui;Wu, Jun;Ren, Yongxin
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.572-576
    • /
    • 2019
  • Bisphosphonates are the mainstay of therapy worldwide for osteoporosis. However, bisphosphonates also have limitations. The objective of this study was to determine the role of miR-101-3p/Rap1b signal pathway in osteoclast differentiation after treatment with bisphosphonates. Our results revealed that miR-101-3p was an important regulator in bisphosphonates treated-osteoclasts. When miR-101-3p was down-regulated in bone marrow-derived macrophage-like cells (BMMs), the development of mature osteoclasts was promoted, and vice versa. However, alendronate decreased multinucleated cell number regardless of whether miR-101-3p was knocked down or over-expressed. TRAP activity assay confirmed the above results. Luciferase assay indicated that miR-101-3p was a negative regulator of Rap1b. Western blot analysis revealed that protein expression level of Rap1b in BMMs transfected with OV-miR-101-3p was lower than that in BMMs transfected with an empty vector. Rap1b overexpression increased TRAP-positive multinucleated cells, while Rap1b inhibition decreased the cell numbers. In vivo data showed that miR-101-3p inhibited osteoclast differentiation in ovariectomized mice while overexpressed of Rap1b blocked the differentiation. Taken together, our data demonstrate that miR-101-3p/Rap1b signal pathway plays a key role in osteoclast differentiation after treatment with bisphosphonates.

MiR-374b Promotes Proliferation and Inhibits Apoptosis of Human GIST Cells by Inhibiting PTEN through Activation of the PI3K/Akt Pathway

  • Long, Zi-Wen;Wu, Jiang-Hong;Hong, Cai;Wang, Ya-Nong;Zhou, Ye
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.532-544
    • /
    • 2018
  • Gastrointestinal stromal tumours (GIST) are the most common mesenchymal tumors of the gastrointestinal (GI) tract. In order to investigate a new treatment fot GIST, we hypothesized the effect of miR-374b targeting PTEN gene-mediated PI3K/Akt signal transduction pathway on proliferation and apoptosis of human gastrointestinal stromal tumor (GIST) cells. We obtained GIST tissues and adjacent normal tissues from 143 patients with GIST to measure the levels of miR-374b, PTEN, PI3K, Akt, caspase9, Bax, MMP2, MMP9, ki67, PCNA, P53 and cyclinD1. Finally, cell viability, cell cycle and apoptosis were detected. According to the KFGG analysis of DEGs, PTEN was involved in a variety of signaling pathways and miRs were associated with cancer development. The results showed that MiR-374b was highly expressed, while PTEN was downregulated in the GIST tissues. The levels of miR-374b, PI3K, AKT and PTEN were related to tumor diameter and pathological stage. Additionally, miR-374b increased the mRNA and protein levels of PI3K, Akt, MMP2, MMP9, P53 and cyclinD1, suggesting that miR-374b activates PI3K/Akt signaling pathway in GIST-T1 cells. Moreover, MiR374b promoted cell viability, migration, invasion, and cell cycle entry, and inhibited apoptosis in GIST cells. Taken together, the results indicated that miR-374b promotes viability and inhibits apoptosis of human GIST cells by targeting PTEN gene through the PI3K/Akt signaling pathway. Thus, this study provides a new potential target for GIST treatment.

MicroRNA-23b is a Potential Tumor Suppressor in Diffuse Large B-cell Lymphoma (미만성 거대 B 세포 림프종(DLBCL)에서 microRNA-23b의 잠재적 종양 억제자로서의 효과)

  • Nam, Jehyun;Kim, Eunkyung;Kim, Jinyoung;Jeong, Dawoom;Kim, Donguk;Kwak, Bomi;Kim, Sang-Woo
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.149-154
    • /
    • 2017
  • Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-hodgkin lymphoma. Advances in the chemotherapeutic treatment of this disease have improved the outcomes of DLBCL; nonetheless, many patients still die of DLBCL, and therefore, a better understanding of this disease and identification of novel therapeutic targets are urgently required. In a recent gene expression profiling study, PDE (phosphodiesterase) 4B was found to be overexpressed in chemotherapy-resistant tumors. The major function of PDE4B is to inactivate the second messenger cyclic 3',5' monophosphate (cAMP) by catalyzing the hydrolysis of cAMP to 5'AMP. It is known that cAMP induces cell cycle arrest and/or apoptosis in B cells, and PDE4B abolishes cAMP's effect on B cells. However, the mechanism by which PDE4B is overexpressed remains unclear. Here, we show that the aberrant expression of miRNA may be associated with the overexpression of this gene. The PDE4B 3' untranslated region (UTR) has three functional binding sites of miR-23b, as confirmed by luciferase reporter assays. Interestingly, miR-23b-binding sites were evolutionarily conserved from humans to lizards, implying the critical role of PDE4B-miR-23b interaction in cellular physiology. The ectopic expression of miR-2 3b repressed PDE4B mRNA levels and enhanced intracellular cAMP concentrations. Additionally, miR-23b expression inhibited cell proliferation and survival of DLBCL cells only in the presence of forskolin, an activator of adenylyl cyclase, suggesting that miR-23b's effect is via the downregulation of PDE4B. These results together suggest that miR-23b could be a therapeutic target for overcoming drug resistance by repressing PDE4B in DLBCL.

Expression Analyses of MicroRNAs in Hamster Lung Tissues Infected by SARS-CoV-2

  • Kim, Woo Ryung;Park, Eun Gyung;Kang, Kyung-Won;Lee, Sang-Myeong;Kim, Bumseok;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.43 no.11
    • /
    • pp.953-963
    • /
    • 2020
  • Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an infectious disease with multiple severe symptoms, such as fever over 37.5℃, cough, dyspnea, and pneumonia. In our research, microRNAs (miRNAs) binding to the genome sequences of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory-related coronavirus (MERS-CoV), and SARS-CoV-2 were identified by bioinformatic tools. Five miRNAs (hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-16-5p, and hsa-miR-196a-1-3p) were found to commonly bind to SARS-CoV, MERS-CoV, and SARS-CoV-2. We also identified miRNAs that bind to receptor proteins, such as ACE2, ADAM17, and TMPRSS2, which are important for understanding the infection mechanism of SARS-CoV-2. The expression patterns of those miRNAs were examined in hamster lung samples infected by SARS-CoV-2. Five miRNAs (hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-221-3p, hsa-miR-140-3p, and hsa-miR-422a) showed differential expression patterns in lung tissues before and after infection. Especially, hsa-miR-15b-5p and hsa-miR-195-5p showed a large difference in expression, indicating that they may potentially be diagnostic biomarkers for SARS-CoV-2 infection.

Effects of MicroRNA-106 on Proliferation of Gastric Cancer Cell through Regulating p21 and E2F5

  • Yao, Yong-Liang;Wu, Xiao-Yang;Wu, Jian-Hong;Gu, Tao;Chen, Ling;Gu, Jin-Hua;Liu, Yun;Zhang, Qing-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2839-2843
    • /
    • 2013
  • Objective: To investigate the effects of miR-106b on malignant characteristics of gastric cancer cells, and explore possible mechanisms. Methods: Expression of miR-106b, p21 and E2F was determined by real-time PCR. Transfection with miR-106b mimics was conducted, and gastric cancer cells with miR-106b overexpression were obtained. Cells transfected with mimic mutants and those without transfection served as negative and blank controls, respectively. Flow cytometry and transwell assays were adopted to detect the effects of miR-106b overexpression on cell cycle, migration and invasion of gastric cancer cells. Results:. The expression of miR- 106b in gastric cancer cells was significantly higher than that in normal gastric mucosa cells. Furthermore, the expression level of miR-106b rose according to the degree of malignacy among the three GC cell strains (MKN- 45 > SGC-7901 > MKN-28). Overexpression of miR-106b shortened the G0/G1 phase and accelerated cell cycle progression, while reducing p21 and E2F5, without any significant effects on the capacity for migration and invasion of gastric cancer cells. Conclusions: miR-106b may promote cell cycling of gastric cancer cells through regulation of p21 and E2F5 target gene expression.

Association of miR-193b Down-regulation and miR-196a up-Regulation with Clinicopathological Features and Prognosis in Gastric Cancer

  • Mu, Yong-Ping;Tang, Song;Sun, Wen-Jie;Gao, Wei-Min;Wang, Mao;Su, Xiu-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8893-8900
    • /
    • 2014
  • Dysregulated expression of microRNAs (miRNAs) has been shown to be closely associated with tumor development, progression, and carcinogenesis. However, their clinical implications for gastric cancer remain elusive. To investigate the hypothesis that genome-wide alternations of miRNAs differentiate gastric cancer tissues from those matched adjacent non-tumor tissues (ANTTs), miRNA arrays were employed to examine miRNA expression profiles for the 5-pair discovery stage, and the quantitative real-time polymerase chain reaction (qRTPCR) was applied to validate candidate miRNAs for 48-pair validation stage. Furthermore, the relationship between altered miRNA and clinicopathological features and prognosis of gastric cancer was explored. Among a total of 1,146 miRNAs analyzed, 16 miRNAs were found to be significantly different expressed in tissues from gastric cancer compared to ANTTs (p<0.05). qRT-PCR further confirmed the variation in expression of miR-193b and miR-196a in the validation stage. Down-expression of miR-193b was significantly correlated with Lauren type, differentiation, UICC stage, invasion, and metastasis of gastric cancer (p<0.05), while over-expression of miR-196a was significantly associated with poor differentiation (p=0.022). Moreover, binary logistic regression analysis demonstrated that the UICC stage was a significant risk factor for down-expression of miR-193b (adjusted OR=8.69; 95%CI=1.06-56.91; p=0.043). Additionally, Kaplan-Meier survival curves indicated that patients with a high fold-change of down-regulated miR-193b had a significantly shorter survival time (n=19; median survival=29 months) compared to patients with a low fold-change of down-regulated miR-193b (n=29; median survival=54 months) (p=0.001). Overall survival time of patients with a low fold-change of up-regulated miR-196a (n=27; median survival=52 months) was significantly longer than that of patients with a high fold-change of up-regulated miR-196a (n=21; median survival=46 months) (p=0.003). Hence, miR-193b and miR-196a may be applied as novel and promising prognostic markers in gastric cancer.

Role of miR-511 in the Regulation of OATP1B1 Expression by Free Fatty Acid

  • Peng, Jin Fu;Liu, Li;Guo, Cheng Xian;Liu, Shi Kun;Chen, Xiao Ping;Huang, Li Hua;Xiang, Hong;Huang, Zhi Jun;Yuan, Hong;Yang, Guo Ping
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.400-406
    • /
    • 2015
  • MicroRNAs (miRNAs) are a family of non-coding RNA that are able to adjust the expression of many proteins, including ATP-binding cassette transporter and organic cation transporter. We sought to evaluate the effect of miR-511 on the regulation of OATP1B1 expression by free fatty acids. When using free fatty acids to stimulate Chang liver cells, we found that the expression of miR-511 increased significantly while the expression of OATP1B1 decreased. We also proved that SLCO1B1 is the target gene of miR-511 with a bioinformatics analysis and using the dual luciferase reporter assay. Furthermore, the expressions of SLCO1B1 and OATP1B1 decreased if transfecting Chang liver cells with miR-511, but did not increase when transfecting the inhibitors of miR-511 into steatosis cells. Our study indicates that miR-511 may play an important role in the regulation of OATP1B1 expression by free fatty acids.

miR-458b-5p regulates ovarian granulosa cells proliferation through Wnt/β-catenin signaling pathway by targeting catenin beta-1

  • Wang, Wenwen;Teng, Jun;Han, Xu;Zhang, Shen;Zhang, Qin;Tang, Hui
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.957-966
    • /
    • 2021
  • Objective: Ovarian follicular development, which dependent on the proliferation and differentiation of granulosa cells (GCs), is a complex biological process in which miRNA plays an important role. Our previous study showed that miR-458b-5p is associated with ovarian follicular development in chicken. The detailed function and molecular mechanism of miR-458b-5p in GCs is unclear. Methods: The luciferase reporter assay was used to verify the targeting relationship between miR-458b-5p and catenin beta-1 (CTNNB1), which is an important transcriptional regulatory factor of the Wnt/β-catenin pathway. The cell counting kit-8 (CCK-8) assay, flow cytometry with propidium iodide (PI) and annexin V-fluorescein isothiocyanate (FITC) labeling were applied to explore the effect of miR-458b-5p on proliferation, cell cycle and apoptosis of chicken GCs. Quantitative real-time polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels. Results: We demonstrated that the expression of miR-458b-5p and CTNNB1 showed the opposite relationship in GCs and theca cells of hierarchical follicles. The luciferase reporter assay confirmed that CTNNB1 is the direct target of miR-458b-5p. Using CCK-8 assay and flow cytometry with PI and Annexin V-FITC labeling, we observed that transfection with the miR-458b-5p mimics significantly reduced proliferation and has no effects on apoptosis of chicken GCs. In addition, miR-458b-5p decreased the mRNA and protein expression of CD44 molecule and matrix metallopeptidase 7, which are the downstream effectors of CTNNB1 in Wnt/β-Catenin pathway and play functional roles in cell proliferation. Conclusion: Taken together, the data indicate that miR-458b-5p regulates ovarian GCs proliferation through Wnt/β-catenin signaling pathway by targeting CTNNB1, suggesting that miR-458b-5p and its target gene CTNNB1 may potentially play a role in chicken ovarian follicular development.