Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0177

Expression Analyses of MicroRNAs in Hamster Lung Tissues Infected by SARS-CoV-2  

Kim, Woo Ryung (Department of Integrated Biological Science, Pusan National University)
Park, Eun Gyung (Department of Integrated Biological Science, Pusan National University)
Kang, Kyung-Won (Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University)
Lee, Sang-Myeong (Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University)
Kim, Bumseok (Korea Zoonosis Research Institute and College of Veterinary Medicine, Jeonbuk National University)
Kim, Heui-Soo (Institute of Systems Biology, Pusan National University)
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an infectious disease with multiple severe symptoms, such as fever over 37.5℃, cough, dyspnea, and pneumonia. In our research, microRNAs (miRNAs) binding to the genome sequences of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory-related coronavirus (MERS-CoV), and SARS-CoV-2 were identified by bioinformatic tools. Five miRNAs (hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-16-5p, and hsa-miR-196a-1-3p) were found to commonly bind to SARS-CoV, MERS-CoV, and SARS-CoV-2. We also identified miRNAs that bind to receptor proteins, such as ACE2, ADAM17, and TMPRSS2, which are important for understanding the infection mechanism of SARS-CoV-2. The expression patterns of those miRNAs were examined in hamster lung samples infected by SARS-CoV-2. Five miRNAs (hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-221-3p, hsa-miR-140-3p, and hsa-miR-422a) showed differential expression patterns in lung tissues before and after infection. Especially, hsa-miR-15b-5p and hsa-miR-195-5p showed a large difference in expression, indicating that they may potentially be diagnostic biomarkers for SARS-CoV-2 infection.
Keywords
hamster lung; hsa-miR-15b-5p; hsa-miR-195-5p; microRNA; severe acute respiratory syndrome coronavirus 2;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wang, H., Yang, P., Liu, K., Guo, F., Zhang, Y., Zhang, G., and Jiang, C. (2008). SARS coronavirus entry into host cells through a novel clathrin-and caveolae-independent endocytic pathway. Cell Res. 18, 290-301.   DOI
2 Wang, L., Qin, Y., Tong, L., Wu, S., Wang, Q., Jiao, Q., Guo, Z., Lin, L., Wang, R., Zhao, W., et al. (2012). MiR-342-5p suppresses coxsackievirus B3 biosynthesis by targeting the 2C-coding region. Antiviral Res. 93, 270-279.   DOI
3 World Health Organization (2020a). Coronavirus disease (COVID-19) Situation Report - 80. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200409-sitrep-80-covid-19.pdf?sfvrsn=1b685d64_6 (accessed April 9, 2020)
4 World Health Organization (2020b). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Available from: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf (accessed March 9, 2020)
5 Wortzel, I. and Seger, R. (2011). The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer 2, 195-209.   DOI
6 Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., et al. (2020a). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 27, 325-328.   DOI
7 Wu, J.T., Leung, K., and Leung, G.M. (2020b). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet 395, 689-697.   DOI
8 Xu, X., Yu, C., Qu, J., Zhang, L., Jiang, S., Huang, D., Chen, B., Zhang, Z., Guan, W., Ling, Z.J., et al. (2020). Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur. J. Nucl. Med. Mol. Imaging 47, 1275-1280.   DOI
9 Yanamadala, S. and Ljungman, M. (2003). Potential role of MLH1 in the induction of p53 and apoptosis by blocking transcription on damaged DNA templates1 1 NIH grant CA82376, a grant from the Gastrointestinal Oncology Program Fund of the University of Michigan Comprehensive Cancer Center, and a grant from the Biomedical Research Council at the University of Michigan Medical School. Mol. Cancer Res. 1, 747-754.
10 Yang, X., Yu, Y., Xu, J., Shu, H., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., Yu, T., et al. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 8, 475-481.   DOI
11 Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., and Fouchier, R.A. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814-1820.   DOI
12 Zeng, P., Wagoner, H.A., Pescovitz, O.H., and Steinmetz, R. (2005). RNA interference (RNAi) for extracellular signal-regulated kinase 1 (ERK1) alone is sufficient to suppress cell viability in ovarian cancer cells. Cancer Biol. Ther. 4, 961-967.   DOI
13 Zhang, B., Pan, X., Cobb, G.P., and Anderson, T.A. (2007). microRNAs as oncogenes and tumor suppressors. Dev. Biol. 302, 1-12.   DOI
14 Zhang, H., Richards, B., Wilson, T., Lloyd, M., Cranston, A., Thorburn, A., Fishel, R., and Meuth, M. (1999). Apoptosis induced by overexpression of hMSH2 or hMLH1. Cancer Res. 59, 3021-3027.
15 Zhao, W. (2013). Negative regulation of TBK1-mediated antiviral immunity. FEBS Lett. 587, 542-548.   DOI
16 Zheng, Y.Y., Ma, Y.T., Zhang, J.Y., and Xie, X. (2020). COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 17, 259-260.   DOI
17 Casacuberta, E. and Gonzalez, J. (2013). The impact of transposable elements in environmental adaptation. Mol. Ecol. 22, 1503-1517.   DOI
18 Zhu, Z.R., He, Q., Wu, W.B., Chang, G.Q., Yao, C., Zhao, Y., Wang, M., and Wang, S.M. (2018). MiR-140-3p is involved in in-stent restenosis by targeting C-Myb and BCL-2 in peripheral artery disease. J. Atheroscler. Thromb. 25, 1168-1181.   DOI
19 Cheng, A.M., Byrom, M.W., Shelton, J., and Ford, L.P. (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33, 1290-1297.   DOI
20 Cao, X., Zhang, G., Li, T., Zhou, C., Bai, L., Zhao, J., and Tursun, T. (2020). LINC00657 knockdown suppresses hepatocellular carcinoma progression by sponging miR-424 to regulate PD-L1 expression. Genes Genomics 42, 1361-1368.   DOI
21 Chakraborty, C., Doss, C.G.P., Bandyopadhyay, S., and Agoramoorthy, G. (2014). Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley Interdiscip. Rev. RNA 5, 697-712.   DOI
22 Chen, J. (2020). Pathogenicity and transmissibility of 2019-nCoV-a quick overview and comparison with other emerging viruses. Microbes Infect. 22, 69-71.   DOI
23 Chen, L., Li, X., Chen, M., Feng, Y., and Xiong, C. (2020a). The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res. 116, 1097-1100.   DOI
24 Chen, Y., Chang, G., Chen, X., Li, Y., Li, H., Cheng, D., Tang, Y., and Sang, H. (2020b). IL-6-miR-210 suppresses regulatory T cell function and promotes atrial fibrosis by targeting Foxp3. Mol. Cells 43, 438-447.   DOI
25 Chen, Y., Guo, Y., Pan, Y., and Zhao, Z.J. (2020c). Structure analysis of the receptor binding of 2019-nCoV. Biochem. Biophys. Res. Commun. 525, 135-140.   DOI
26 Chen, Y., Liu, Q., and Guo, D. (2020d). Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol. 92, 418-423.   DOI
27 Das, G., Mukherjee, N., and Ghosh, S. (2020). Neurological insights of COVID-19 pandemic. ACS Chem. Neurosci. 11, 1206-1209.   DOI
28 Epidemiology Working Group for NCIP Epidemic Response and Chinese Center for Disease Control and Prevention (2020). [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi 41, 145-151. Chinese.
29 Delamater, P.L., Street, E.J., Leslie, T.F., Yang, Y.T., and Jacobsen, K.H. (2019). Complexity of the basic reproduction number (R0). Emerg. Infect. Dis. 25, 1-4.   DOI
30 Drosten, C., Gunther, S., Preiser, W., Van Der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., and Fouchier, R.A. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967-1976.   DOI
31 Finnerty, J.R., Wang, W.X., Hebert, S.S., Wilfred, B.R., Mao, G., and Nelson, P.T. (2010). The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J. Mol. Biol. 402, 491-509.   DOI
32 Fulzele, S., Sahay, B., Yusufu, I., Lee, T.J., Sharma, A., Kolhe, R., and Isales, C.M. (2020). COVID-19 virulence in aged patients might be impacted by the host cellular MicroRNAs abundance/profile. Aging Dis. 11, 509.   DOI
33 Gambardella, J., Sardu, C., Morelli, M.B., Messina, V., Castellanos, V., Marfella, R., Maggi, P., Paolisso, G., Wang, X., and Santulli, G. (2020). Exosomal microRNAs drive thrombosis in COVID-19. medRxiv.
34 Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., and Zhang, L. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368, 779-782.   DOI
35 Gross, S., Jahn, C., Cushman, S., Bar, C., and Thum, T. (2020). SARS-CoV-2 receptor ACE2-dependent implications on the cardiovascular system: from basic science to clinical implications. J. Mol. Cell. Cardiol. 144, 47-53.   DOI
36 Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.H., Nitsche, A., et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271-280.e8.   DOI
37 Guterres, A., de Azeredo Lima, C.H., Miranda, R.L., and Gadelha, M.R. (2020). What is the potential function of microRNAs as biomarkers and therapeutic targets in COVID-19? Infect. Genet. Evol. 85, 104417.   DOI
38 Heurich, A., Hofmann-Winkler, H., Gierer, S., Liepold, T., Jahn, O., and Pohlmann, S. (2014). TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 88, 1293-1307.   DOI
39 Ho, B.C., Yang, P.C., and Yu, S.L. (2016). MicroRNA and pathogenesis of enterovirus infection. Viruses 8, 11.   DOI
40 Hooykaas, M.J., Kruse, E., Wiertz, E.J., and Lebbink, R.J. (2016). Comprehensive profiling of functional Epstein-Barr virus miRNA expression in human cell lines. BMC Genom. 17, 1-13.   DOI
41 Imai, Y., Kuba, K., Ohto-Nakanishi, T., and Penninger, J.M. (2010). Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ. J. 74, 405-410.   DOI
42 Ivashchenko, A., Rakhmetullina, A., and Aisina, D. (2020). How miRNAs can protect humans from coronaviruses COVID-19, SARS-CoV, and MERS-CoV. Research Square https://doi.org/10.21203/rs.3.rs-16264/v1
43 Jin, D. and Lee, H. (2016). Prioritizing cancer-related microRNAs by integrating microRNA and mRNA datasets. Sci. Rep. 6, 35350.   DOI
44 Anderson, G. and Reiter, R.J. (2020). Melatonin: roles in influenza, Covid-19, and other viral infections. Rev. Med. Virol. 30, e2109.   DOI
45 Haga, S., Yamamoto, N., Nakai-Murakami, C., Osawa, Y., Tokunaga, K., Sata, T., Yamamoto, N., Sasazuki, T., and Ishizaka, Y. (2008). Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry. Proc. Natl. Acad. Sci. U. S. A. 105, 7809-7814.   DOI
46 Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M., and Sarnow, P. (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309, 1577-1581.   DOI
47 Abdel-Mohsen, M., Deng, X., Danesh, A., Liegler, T., Jacobs, E.S., Rauch, A., Ledergerber, B., Norris, P.J., Gunthard, H.F., Wong, J.K., et al. (2014). Role of microRNA modulation in the interferon-α/ribavirin suppression of HIV-1 in vivo. PLoS One 9, e109220.   DOI
48 Aqeilan, R., Calin, G.A., and Croce, C.M. (2010). miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 17, 215-220.   DOI
49 Ashour, H.M., Elkhatib, W.F., Rahman, M., and Elshabrawy, H.A. (2020). Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 9, 186.   DOI
50 Bandi, N., Zbinden, S., Gugger, M., Arnold, M., Kocher, V., Hasan, L., Kappeler, A., Brunner, T., and Vassella, E. (2009). miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res. 69, 5553-5559.   DOI
51 Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.   DOI
52 Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Sullivan, J.L., Luzuriaga, K., and Greenough, T.C. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450-454.   DOI
53 Barwari, T., Joshi, A., and Mayr, M. (2016). MicroRNAs in cardiovascular disease. J. Am. Coll. Cardiol. 68, 2577-2584.   DOI
54 Benvenuto, D., Giovanetti, M., Ciccozzi, A., Spoto, S., Angeletti, S., and Ciccozzi, M. (2020). The 2019-new coronavirus epidemic: evidence for virus evolution. J. Med. Virol. 92, 455-459.   DOI
55 Lee, H.E., Jo, A., Im, J., Cha, H.J., Kim, W.J., Kim, H.H., Kim, D.S., Kim, W., Yang, T.J., and Kim, H.S. (2019). Characterization of the long terminal repeat of the endogenous retrovirus-derived microRNAs in the olive flounder. Sci. Rep. 9, 1-10.
56 Liang, H.X. and Li, Y.H. (2020). MiR-873, as a suppressor in cervical cancer, inhibits cells proliferation, invasion and migration via negatively regulating ULBP2. Genes Genomics 42, 371-382.   DOI
57 Linsley, P.S., Schelter, J., Burchard, J., Kibukawa, M., Martin, M.M., Bartz, S.R., Johnson, J.M., Cummins, J.M., Raymond, C.K., and Dai, H. (2007). Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol. Cell. Biol. 27, 2240-2252.   DOI
58 Liu, M., Wang, T., Zhou, Y., Zhao, Y., Zhang, Y., and Li, J. (2020). Potential role of ACE2 in coronavirus disease 2019 (COVID-19) prevention and management. J. Transl. Int. Med. 8, 9-19.   DOI
59 Liu, Q., Fu, H., Sun, F., Zhang, H., Tie, Y., Zhu, J., Xing, R., Sun, Z., and Zheng, X. (2008). miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res. 36, 5391-5404.   DOI
60 Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565-574.   DOI
61 Lee, H.E., Huh, J.W., and Kim, H.S. (2020). Bioinformatics analysis of evolution and human disease related transposable element-derived microRNAs. Life 10, 95.   DOI
62 Luo, H., Li, Y., Liu, B., Yang, Y., and Xu, Z.Q.D. (2017). MicroRNA-15b-5p targets ERK1 to regulate proliferation and apoptosis in rat PC12 cells. Biomed. Pharmacother. 92, 1023-1029.   DOI
63 Malik, Y.S., Sircar, S., Bhat, S., Sharun, K., Dhama, K., Dadar, M., Tiwari, R., and Chaicumpa, W. (2020). Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Vet. Q. 40, 68-76.   DOI
64 McCue, A.D., Nuthikattu, S., Reeder, S.H., and Slotkin, R.K. (2012). Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PLoS Genet. 8, e1002474.   DOI
65 Mousavizadeh, L. and Ghasemi, S. (2020). Genotype and phenotype of COVID-19: their roles in pathogenesis. J. Microbiol. Immunol. Infect. https://doi.org/10.1016/j.jmii.2020.03.022   DOI
66 Munster, V.J., Koopmans, M., van Doremalen, N., van Riel, D., and de Wit, E. (2020). A novel coronavirus emerging in China-key questions for impact assessment. N. Engl. J. Med. 382, 692-694.   DOI
67 Murakami, Y., Yasuda, T., Saigo, K., Urashima, T., Toyoda, H., Okanoue, T., and Shimotohno, K. (2006). Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25, 2537-2545.   DOI
68 Pineau, P., Volinia, S., McJunkin, K., Marchio, A., Battiston, C., Terris, B., Mazzaferro, V., Lowe, S.W., Croce, C.M., and Dejean, A. (2010). miR-221 overexpression contributes to liver tumorigenesis. Proc. Natl. Acad. Sci. U. S. A. 107, 264-269.   DOI
69 Pedersen, S.F. and Ho, Y.C. (2020). SARS-CoV-2: a storm is raging. J. Clin. Invest. 130, 2202-2205.   DOI
70 Piedade, D. and Azevedo-Pereira, J.M. (2016). The role of microRNAs in the pathogenesis of herpesvirus infection. Viruses 8, 156.   DOI
71 Pinto, Y., Buchumenski, I., Levanon, E.Y., and Eisenberg, E. (2018). Human cancer tissues exhibit reduced A-to-I editing of miRNAs coupled with elevated editing of their targets. Nucleic Acids Res. 46, 71-82.   DOI
72 Piriyapongsa, J., Marino-Ramirez, L., and Jordan, I.K. (2007). Origin and evolution of human microRNAs from transposable elements. Genetics 176, 1323-1337.   DOI
73 Reddy, K.B. (2015). MicroRNA (miRNA) in cancer. Cancer Cell Int. 15, 1-6.   DOI
74 Roberts, J.T., Cooper, E.A., Favreau, C.J., Howell, J.S., Lane, L.G., Mills, J.E., Newman, D.C., Perry, T.J., Russell, M.E., Wallace, B.M., et al. (2013). Continuing analysis of microRNA origins: formation from transposable element insertions and noncoding RNA mutations. Mob. Genet. Elements 3, e27755.   DOI
75 Scheel, T.K., Luna, J.M., Liniger, M., Nishiuchi, E., Rozen-Gagnon, K., Shlomai, A., Auray, G., Gerber, M., Fak, J., Keller, I., et al. (2016). A broad RNA virus survey reveals both miRNA dependence and functional sequestration. Cell Host Microbe 19, 409-423.   DOI
76 Small, E.M., Frost, R.J., and Olson, E.N. (2010). MicroRNAs add a new dimension to cardiovascular disease. Circulation 121, 1022-1032.   DOI
77 Singh, A.K., Rooge, S.B., Varshney, A., Vasudevan, M., Bhardwaj, A., Venugopal, S.K., Trehanpati, N., Kumar, M., Geffers, R., Kumar, V., et al. (2018). Global microRNA expression profiling in the liver biopsies of hepatitis B virus-infected patients suggests specific microRNA signatures for viral persistence and hepatocellular injury. Hepatology 67, 1695-1709.   DOI
78 Slotkin, R.K. and Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272-285.   DOI
79 Smalheiser, N.R. and Torvik, V.I. (2005). Mammalian microRNAs derived from genomic repeats. Trends Genet. 21, 322-326.   DOI
80 Song, L., Liu, H., Gao, S., Jiang, W., and Huang, W. (2010). Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J. Virol. 84, 8849-8860.   DOI
81 Trobaugh, D.W. and Klimstra, W.B. (2017). MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol. Med. 23, 80-93.   DOI
82 ul Qamar, M.T., Alqahtani, S.M., Alamri, M.A., and Chen, L.L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal. 10, 313-319.   DOI
83 Wan, Y., Shang, J., Graham, R., Baric, R.S., and Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 94, e00127-20.
84 Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., et al. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061-1069.   DOI