miR-458b-5p regulates ovarian granulosa cells proliferation through Wnt/β-catenin signaling pathway by targeting catenin beta-1 |
Wang, Wenwen
(Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University)
Teng, Jun (Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University) Han, Xu (Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University) Zhang, Shen (Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University) Zhang, Qin (Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University) Tang, Hui (Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University) |
1 | Ji Z, Wang G, Zhang C, Xie Z, Liu Z, Wang J. Identification and function prediction of novel microRNAs in Laoshan dairy goats. Asian-Australas J Anim Sci 2013;26:309-15. https://doi.org/10.5713/ajas.2012.12422 DOI |
2 | Wang W, Li X, Ding N, et al. miR-34a regulates adipogenesis in porcine intramuscular adipocytes by targeting ACSL4. BMC Genet 2020;21:33. https://doi.org/10.1186/s12863-020-0836-7 DOI |
3 | Lau NC. Small RNAs in the animal gonad: guarding genomes and guiding development. Int J Biochem Cell Biol 2010;42:1334-47. https://doi.org/10.1016/j.biocel.2010.03.005 DOI |
4 | Wu H, Fan F, Liang C, et al. Variants of pri-miR-26a-5p polymorphisms are associated with values for chicken egg production variables and affects abundance of mature miRNA. Anim Reprod Sci 2019;201:93-101. https://doi.org/10.1016/j.anireprosci.2019.01.002 DOI |
5 | Luense LJ, Carletti MZ, Christenson LK. Role of Dicer in female fertility. Trends Endocrinol Metab 2009;20:265-72. https://doi.org/10.1016/j.tem.2009.05.001 DOI |
6 | Tesfaye D, Gebremedhn S, Salilew-Wondim D, et al. Micro-RNAs: tiny molecules with a significant role in mammalian follicular and oocyte development. Reproduction 2018;155:R121-35. https://doi.org/10.1530/REP-17-0428 DOI |
7 | Tu J, Cheung AHH, Chan CLK, Chan WY. The role of micro-RNAs in ovarian granulosa cells in health and disease. Front Endocrinol 2019;10:174. https://doi.org/10.3389/fendo.2019.00174 DOI |
8 | Maalouf SW, Liu WS, Pate JL. MicroRNA in ovarian function. Cell Tissue Res 2016;363:7-18. https://doi.org/10.1007/s00441-015-2307-4 DOI |
9 | Craig J, Orisaka M, Wang H, et al. Gonadotropin and intra-ovarian signals regulating follicle development and atresia: the delicate balance between life and death. Front Biosci 2007;12:3628-39. https://doi.org/10.2741/2339 DOI |
10 | Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 2013;13:11-26. https://doi.org/10.1038/nrc3419 DOI |
11 | Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 2012;13:767-79. https://doi.org/10.1038/nrm3470 DOI |
12 | Boyer A, Lapointe E, Zheng X, et al. WNT4 is required for normal ovarian follicle development and female fertility. FASEB J 2010;24:3010-25. https://doi.org/10.1096/fj.09-145789 DOI |
13 | Guan L, Zhu S, Han Y, et al. Knockout of CTNNB1 by CRISPR-Cas9 technology inhibits cell proliferation through the Wnt/β-catenin signaling pathway. Biotechnol Lett 2018;40:501-8. https://doi.org/10.1007/s10529-017-2491-2 DOI |
14 | Wang W, Wu K, Jia M, et al. Dynamic changes in the global microRNAome and transcriptome identify key nodes associated with ovarian development in chickens. Front Genet 2018;9:491. https://doi.org/10.3389/fgene.2018.00491 DOI |
15 | Zhu G, Jiang Y. Polymorphism, genetic effect and association with egg production traits of chicken matrix metalloproteinases 9 promoter. Asian-Australas J Anim Sci 2014;27:1526-31. https://doi.org/10.5713/ajas.2014.14209 DOI |
16 | Katoh M. Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). Int J Mol Med 2018;42:713-25. https://doi.org/10.3892/ijmm.2018.3689 DOI |
17 | Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA 2004;10:1507-17. 10.1261/rna.5248604 DOI |
18 | Chen W, Song LJ, Zeng YQ, Yang Y, Wang H. Analysis on differential expressed genes of ovarian tissue between high-and low-yield laying hen. Anim Biotechnol 2013;24:278-87. https://doi.org/10.1080/10495398.2013.805695 DOI |
19 | Stephens CS, Johnson PA. Bone morphogenetic protein 15 may promote follicle selection in the hen. Gen Comp Endocrinol 2016;235:170-6. https://doi.org/10.1016/j.ygcen.2016.06.027 DOI |
20 | Wheatley SP, Altieri DC. Survivin at a glance. J Cell Sci 2019;132:jcs223826. https://doi.org/10.1242/jcs.223826 DOI |
21 | Fu H, Zhou D, Zhu H, et al. Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney Int 2019;95:1167-80. https://doi.org/10.1016/j.kint.2018.11.043 DOI |
22 | Bertaux-Skeirik N, Feng R, Schumacher MA, et al. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog 2015;11:e1004663. https://doi.org/10.1371/journal.ppat.1004663 DOI |
23 | Chaffin CL, VandeVoort CA. Follicle growth, ovulation, and luteal formation in primates and rodents: a comparative perspective. Exp Biol Med 2013;238:539-48. https://doi.org/10.1177/1535370213489437 DOI |
24 | Han XM, Tian PY, Zhang JL. MicroRNA-486-5p inhibits ovarian granulosa cell proliferation and participates in the development of PCOS via targeting MST4. Eur Rev Med Pharmacol Sci 2019;23:7217-23. https://doi.org/10.26355/eurrev_201909_18823 DOI |
25 | Baley J, Li J. MicroRNAs and ovarian function. J Ovarian Res 2012;5:8. https://doi.org/10.1186/1757-2215-5-8 DOI |
26 | Wang Y, Chen Q, Liu Z, et al. Transcriptome analysis on single small yellow follicles reveals that Wnt4 is involved in chicken follicle selection. Front Endocrinol 2017;8:317. https://doi.org/10.3389/fendo.2017.00317 DOI |
27 | Guo X, Wang Y, Chen Q, et al. The role of PTHLH in ovarian follicle selection, its transcriptional regulation and genetic effects on egg laying traits in hens. Front Genet 2019;10:430. https://doi.org/10.3389/fgene.2019.00430 DOI |
28 | Zhang P, Wang L, Li Y, et al. Identification and characterization of microRNA in the lung tissue of pigs with different susceptibilities to PCV2 infection. Vet Res 2018;49:18. https://doi.org/10.1186/s13567-018-0512-3 DOI |
29 | Johnson AL, Solovieva EV, Bridgham JT. Relationship between steroidogenic acute regulatory protein expression and progesterone production in hen granulosa cells during follicle development. Biol Reprod 2002;67:1313-20. https://doi.org/10.1095/biolreprod67.4.1313 DOI |
30 | Grimson A, Srivastava M, Fahey B, et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 2008;455:1193-7. https://doi.org/10.1038/nature07415 DOI |
31 | Wang H, Liu L, Liu X, Zhang M, Li X. Correlation between miRNAs and target genes in response to Campylobacter jejuni inoculation in chicken. Poult Sci 2018;97:485-93. https://doi.org/10.3382/ps/pex343 DOI |
32 | Liu X, Liu L, Zhang M, Wang H, Yang N, Li X. Chicken cecal microRNAs in the response to Campylobacter jejuni inoculation by Solexa sequencing. Poult Sci 2016;95:2819-23. https://doi.org/10.3382/ps/pew190 DOI |
33 | Yokota N, Nishizawa S, Ohta S, et al. Role of Wnt pathway in medulloblastoma oncogenesis. Int J Cancer 2002;101:198-201. https://doi.org/10.1002/ijc.10559 DOI |