Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.010

Role of miR-511 in the Regulation of OATP1B1 Expression by Free Fatty Acid  

Peng, Jin Fu (Department of Pharmacy, The Third Xiangya Hospital, Central South University)
Liu, Li (Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University)
Guo, Cheng Xian (Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University)
Liu, Shi Kun (Department of Pharmacy, The Third Xiangya Hospital, Central South University)
Chen, Xiao Ping (Institute of Clinical Pharmacology, Central South University)
Huang, Li Hua (Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University)
Xiang, Hong (Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University)
Huang, Zhi Jun (Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University)
Yuan, Hong (Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University)
Yang, Guo Ping (Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University)
Publication Information
Biomolecules & Therapeutics / v.23, no.5, 2015 , pp. 400-406 More about this Journal
Abstract
MicroRNAs (miRNAs) are a family of non-coding RNA that are able to adjust the expression of many proteins, including ATP-binding cassette transporter and organic cation transporter. We sought to evaluate the effect of miR-511 on the regulation of OATP1B1 expression by free fatty acids. When using free fatty acids to stimulate Chang liver cells, we found that the expression of miR-511 increased significantly while the expression of OATP1B1 decreased. We also proved that SLCO1B1 is the target gene of miR-511 with a bioinformatics analysis and using the dual luciferase reporter assay. Furthermore, the expressions of SLCO1B1 and OATP1B1 decreased if transfecting Chang liver cells with miR-511, but did not increase when transfecting the inhibitors of miR-511 into steatosis cells. Our study indicates that miR-511 may play an important role in the regulation of OATP1B1 expression by free fatty acids.
Keywords
miR-511; OATP1B1; SCLO1B1; Expression; Free fatty acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abe, T., Kakyo, M., Tokui, T., Nakagomi, R., Nishio, T., Nakai, D., Nomura, H., Unno, M., Suzuki, M., Naitoh, T., Matsuno, S. and Yawo, H. (1999) Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J. Biol. Chem. 274, 17159-17163.   DOI
2 Adlakha, Y. K., Khanna, S., Singh, R., Singh, V. P., Agrawal, A. and Saini, N. (2013) Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and $RXR{\alpha}$ expression and cholesterol homeostasis. Cell Death Dis. 29, e780.
3 de Aguiar Vallim, T. Q., Tarling, E. J., Kim, T., Civelek, M., Baldan, A., Esau, C. and Edwards, P. A. (2013) MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor. Circ. Res. 112, 1602-1612.   DOI
4 Feldstein, A. E., Werneburg, N. W., Canbay, A., Guicciardi, M. E., Bronk, S. F., Rydzewski, R., Burgart, L. J. and Gores, G. J. (2004) Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 40, 185-194.   DOI
5 Gao, Q., Wang, X. Y., Zhou, J. and Fan, J. (2011) Cell line misidentification: The case of the Chang liver cell line. Hepatology 54, 1894-1895.   DOI
6 Geier, A., Dietrich, C. G., Grote, T., Beuers, U., Prufer, T., Fraunberger, P., Matern, S., Gartung, C., Gerbes, A. L. and Bilzer, M. (2005) Characterization of organic anion transporter regulation, glutathione metabolism and bile formation in the obese Zucker rat. J. Hepatol. 43, 1021-1030.   DOI
7 Gomez-Lechon, M. J., Donato, M. T., Martinez-Romero, A., Jimenez, N., Castell, J. V. and O'Connor, J. E. (2007) A human hepatocellular in vitro model to investigate steatosis. Chem. Biol. Interact. 165, 106-116.   DOI
8 Glaeser, H., Bailey, D. G., Dresser, G. K., Gregor, J. C, Schwarz, U. I., McGrath, J. S., Jolicoeur, E., Lee, W., Leake, B. F., Tirona, R. G. and Kim, R. B. (2007) Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin. Pharmacol. Ther. 81, 362-370.   DOI
9 Kalliokoski, A. and Niemi, M. (2009) Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol. 158, 693-705.   DOI
10 Keitel, V., Burdelski, M., Warskulat, U., Kuhlkamp, T., Keppler, D., Haussinger, D. and Kubitz, R. (2005) Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology 41, 1160-1172.   DOI
11 Le Vee, M., Lecureur, V., Stieger, B. and Fardel, O. (2009a) Regulation of drug transporter expression in human hepatocytes exposed to the proinflammatory cytokines tumor necrosis factor-alpha or interleukin-6. Drug Metab. Dispos. 37, 685-693.   DOI
12 Le Vee, M., Lecureur, V., Moreau, A., Stieger, B. and Fardel, O. (2009 b) Differential regulation of drug transporter expression by hepatocyte growth factor in primary human hepatocytes. Drug Metab. Dispos. 37, 2228-2235.   DOI
13 Lin, X., Guan, H., Huang, Z., Liu, J., Li, H., Wei, G., Cao, X. and Li, Y. (2014) Downregulation of Bcl-2 expression by miR-34a mediates palmitate-induced Min6 cells apoptosis. J. Diabetes Res. 2014, 258695.
14 Lim, C. H., Jeong, W., Lim, W., Kim, J., Song, G., Bazer, F. W. (2012) Differential expression of select members of the SLC family of genes and regulation of expression by microRNAs in the chicken oviduct. Biol. Reprod. 87, 145.   DOI
15 Ricchi, M., Odoardi, M. R., Carulli, L., Anzivino, C., Ballestri, S., Pinetti, A., Fantoni, L. I., Marra, F., Bertolotti, M., Banni, S., Lonardo, A., Carulli, N. and Loria, P. (2009) Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J. Gastroenterol. Hepatol. 24, 830-840.   DOI   ScienceOn
16 Zhu, L., Shi, C., Ji, C., Xu, G., Chen, L., Yang, L., Fu, Z., Cui, X., Lu, Y. and Guo, X. (2013) FFAs and adipokine-mediated regulation of hsa-miR-143 expression in human adipocytes. Mol. Biol. Rep. 40, 5669-5675.   DOI