Browse > Article
http://dx.doi.org/10.14348/molcells.2018.2211

MiR-374b Promotes Proliferation and Inhibits Apoptosis of Human GIST Cells by Inhibiting PTEN through Activation of the PI3K/Akt Pathway  

Long, Zi-Wen (Department of Surgery, Shigatse People's Hospital)
Wu, Jiang-Hong (Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center)
Hong, Cai (Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center)
Wang, Ya-Nong (Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center)
Zhou, Ye (Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center)
Abstract
Gastrointestinal stromal tumours (GIST) are the most common mesenchymal tumors of the gastrointestinal (GI) tract. In order to investigate a new treatment fot GIST, we hypothesized the effect of miR-374b targeting PTEN gene-mediated PI3K/Akt signal transduction pathway on proliferation and apoptosis of human gastrointestinal stromal tumor (GIST) cells. We obtained GIST tissues and adjacent normal tissues from 143 patients with GIST to measure the levels of miR-374b, PTEN, PI3K, Akt, caspase9, Bax, MMP2, MMP9, ki67, PCNA, P53 and cyclinD1. Finally, cell viability, cell cycle and apoptosis were detected. According to the KFGG analysis of DEGs, PTEN was involved in a variety of signaling pathways and miRs were associated with cancer development. The results showed that MiR-374b was highly expressed, while PTEN was downregulated in the GIST tissues. The levels of miR-374b, PI3K, AKT and PTEN were related to tumor diameter and pathological stage. Additionally, miR-374b increased the mRNA and protein levels of PI3K, Akt, MMP2, MMP9, P53 and cyclinD1, suggesting that miR-374b activates PI3K/Akt signaling pathway in GIST-T1 cells. Moreover, MiR374b promoted cell viability, migration, invasion, and cell cycle entry, and inhibited apoptosis in GIST cells. Taken together, the results indicated that miR-374b promotes viability and inhibits apoptosis of human GIST cells by targeting PTEN gene through the PI3K/Akt signaling pathway. Thus, this study provides a new potential target for GIST treatment.
Keywords
apoptosis; gastrointestinal stromal tumor; microRNA-374b; PI3K/Akt signaling pathway; proliferation; PTEN;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, L., Wang, J., Wang, B., Yang, J., Gong, Z., Zhao, X., Zhang, C., and Du, K. (2016). MiR-126 inhibits vascular endothelial cell apoptosis through targeting PI3K/Akt signaling. Ann. Hematol. 95, 365-374.   DOI
2 Choi, H.J., Lee, H., Kim, H., Kwon, J.E., Kang, H.J., You, K.T., Rhee, H., Noh, S.H., Paik, Y.K., Hyung, W. J., Kim, H. (2010). MicroRNA expression profile of gastrointestinal stromal tumors is distinguished by 14q loss and anatomic site. Int. J. Cancer 126, 1640-1650.
3 Dong, P., Konno, Y., Watari, H., Hosaka, M., Noguchi, M., and Sakuragi, N. (2014). The impact of microRNA-mediated PI3K/AKT signaling on epithelial-mesenchymal transition and cancer stemness in endometrial cancer. J. Transl. Med. 12, 231.   DOI
4 Fresno Vara, J.A., Casado, E., de Castro, J., Cejas, P., Belda-Iniesta, C., and Gonzalez-Baron, M. (2004). PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 30, 193-204.   DOI
5 Fujita, A., Sato, J.R., Rodrigues Lde, O., Ferreira, C.E., and Sogayar, M. C. (2006). Evaluating different methods of microarray data normalization. BMC bioinformatics 7, 469.   DOI
6 Gao, Q., Ye, F., Xia, X., Xing, H., Lu, Y., Zhou, J., and Ma, D. (2009). Correlation between PTEN expression and PI3K/Akt signal pathway in endometrial carcinoma. J. Huazhong Univ. Sci. Technolog. Med. Sci. 29, 59-63.   DOI
7 Lanke, G., and Lee, J.H. (2017). How best to manage gastrointestinal stromal tumor. World J. Clin. Oncol. 8, 135-144.   DOI
8 Hu, S., Bao, H., Xu, X., Zhou, X., Qin, W., Zeng, C., and Liu, Z. (2015). Increased miR-374b promotes cell proliferation and the production of aberrant glycosylated IgA1 in B cells of IgA nephropathy. FEBS Lett. 589, 4019-4025.   DOI
9 Isosaka, M., Niinuma, T., Nojima, M., Kai, M., Yamamoto, E., Maruyama, R., Nobuoka, T., Nishida, T., Kanda, T., Taguchi, T., et al. (2015). A screen for epigenetically silenced microRNA genes in gastrointestinal stromal tumors. PloS one 10, e0133754.   DOI
10 Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27-30.   DOI
11 Li, P., Mao, W.M., Zheng, Z.G., Dong, Z.M., and Ling, Z.Q. (2013). Down-regulation of PTEN expression modulated by dysregulated miR-21 contributes to the progression of esophageal cancer. Dig. Dis. Sci. 58, 3483-3493.   DOI
12 Liu, G.L., Yang, H.J., Liu, B., and Liu, T. (2017). Effects of microRNA-19b on the proliferation, apoptosis, and migration of Wilms' Tumor cells via the PTEN/PI3K/AKT signaling pathway. J. Cell. Biochem. 118, 3424-3434.   DOI
13 Sato, T., Shiba-Ishii, A., Kim, Y., Dai, T., Husni, R.E., Hong, J., Kano, J., Sakashita, S., Iijima, T., and Noguchi, M. (2017). miR-3941: A novel microRNA that controls IGBP1 expression and is associated with malignant progression of lung adenocarcinoma. Cancer Sci. 108, 536-542.   DOI
14 Lu, X.X., Cao, L.Y., Chen, X., Xiao, J., Zou, Y., and Chen, Q. (2016). PTEN inhibits cell proliferation, promotes cell apoptosis, and induces cell cycle arrest via downregulating the PI3K/AKT/hTERT pathway in lung adenocarcinoma A549 cells. BioMed Res. Int. 2016, 2476842.
15 Maehama, T. (2007). PTEN: its deregulation and tumorigenesis. Biol. Pharmaceut. Bull. 30, 1624-1627.   DOI
16 Markou, A., Zavridou, M., and Lianidou, E.S. (2016). miRNA-21 as a novel therapeutic target in lung cancer. Lung Cancer (Auckl) 7, 19-27.
17 Miettinen, M., and Lasota, J. (2001). Gastrointestinal stromal tumors--definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Archiv. 438, 1-12.   DOI
18 Mogensen, C.E., and Hansen, K.W. (1990). Preventing or postponing renal disease in insulin-dependent diabetes by glycemic and nonglycemic intervention. Contrib. Nephrol. 78, 73-100; discussion 100-101.
19 Smyth, G.K. (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3.
20 Tao, K., Yang, J., Guo, Z., Hu, Y., Sheng, H., Gao, H., and Yu, H. (2014). Prognostic value of miR-221-3p, miR-342-3p and miR-491-5p expression in colon cancer. Am. J. Transl. Res. 6, 391-401.
21 Tsang, V.H., Dwight, T., Benn, D.E., Meyer-Rochow, G.Y., Gill, A.J., Sywak, M., Sidhu, S., Veivers, D., Sue, C.M., et al. (2014). Overexpression of miR-210 is associated with SDH-related pheochromocytomas, paragangliomas, and gastrointestinal stromal tumours. Endoc. Relat. Cancer 21, 415-426.   DOI
22 Wu, W. K., Lee C. W., Cho, C.H., Fan, D., Wu, K., Yu, J., and Sung, J.J. (2010). MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene 29, 5761-5771.   DOI
23 Tu, K., Liu, Z., Yao, B., Han S., and Yang W. (2016). MicroRNA-519a promotes tumor growth by targeting PTEN/PI3K/AKT signaling in hepatocellular carcinoma. Int. J. Oncol. 48, 965-974.   DOI
24 Valsangkar, N., Sehdev, A., Misra, S., Zimmers, T.A., O'Neil, B.H., and Koniaris, L.G. (2015). Current management of gastrointestinal stromal tumors: Surgery, current biomarkers, mutations, and therapy. Surgery 158, 1149-1164.   DOI
25 Wang, P., Zou, F., Zhang, X., Li, H., Dulak, A., Tomko, R. J., Jr., Lazo, J.S., Wang, Z., Zhang, L., and Yu, J. (2009). microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res. 69, 8157-8165.   DOI
26 Wu, X., Li, S., Xu, X., Wu, S., Chen, R., Jiang, Q., Li, Y., and Xu, Y. (2015). The potential value of miR-1 and miR-374b as biomarkers for colorectal cancer. Int J. Clin. Exp. Pathol. 8, 2840-2851.
27 Wu, Y.R., Qi, H.J., Deng, D.F., Luo, Y.Y., and Yang, S.L. (2016). MicroRNA-21 promotes cell proliferation, migration, and resistance to apoptosis through PTEN/PI3K/AKT signaling pathway in esophageal cancer. Tumour Biol. 37, 12061-12070.   DOI
28 Xiong, J., Li, Z., Zhang, Y., Li, D., Zhang, G., Luo, X., Jie, Z., Liu, Y., Cao, Y., Le, Z., et al. (2016). PRL-3 promotes the peritoneal metastasis of gastric cancer through the PI3K/Akt signaling pathway by regulating PTEN. Oncol. Rep. 36, 1819-1828.   DOI
29 Yang, Z., Fang, S., Di, Y., Ying, W., Tan, Y., and Gu, W. (2015). Modulation of NF-kappaB/miR-21/PTEN pathway sensitizes non-small cell lung cancer to cisplatin. PloS one 10, e0121547.   DOI
30 Ye, M., Li, J., and Gong, J. (2017). PCDH10 gene inhibits cell proliferation and induces cell apoptosis by inhibiting the PI3K/Akt signaling pathway in hepatocellular carcinoma cells. Oncology Rep. 37, 3167-3174.   DOI
31 Ying, J., Xu, Q., Liu, B., Zhang, G., Chen, L., and Pan, H. (2015). The expression of the PI3K/AKT/mTOR pathway in gastric cancer and its role in gastric cancer prognosis. Onco Targets Ther. 8, 2427-2433.
32 Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284-287.   DOI
33 Zhang, Z., Li, Z., Ga,o C., Chen, P., Chen, J., Liu, W., Xiao, S., and Lu, H. (2008). miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab. Invest. 88, 1358-1366.   DOI
34 Zhu, C.Z., Liu, D., Kang, W.M., Yu, J.C., Ma Z.Q., Ye, X., and Li, K. (2017). Ghrelin and gastrointestinal stromal tumors. World J. Gastroenterol. 23, 1758-1763.   DOI
35 Cao, C.L., Niu, H.J., Kang, S.P., Cong, C.L., and Kang, S.R. (2016). miRNA-21 sensitizes gastrointestinal stromal tumors (GISTs) cells to Imatinib via targeting B-cell lymphoma 2 (Bcl-2). Eur. Rev. Med. Pharmacol. Sci. 20, 3574-3581.