• Title/Summary/Keyword: miR-103

Search Result 55, Processing Time 0.031 seconds

miRNA-103a-3p Promotes Human Gastric Cancer Cell Proliferation by Targeting and Suppressing ATF7 in vitro

  • Hu, Xiaoyi;Miao, Jiyu;Zhang, Min;Wang, Xiaofei;Wang, Zhenzhen;Han, Jia;Tong, Dongdong;Huang, Chen
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.390-400
    • /
    • 2018
  • Studies have revealed that miR-103a-3p contributes to tumor growth in several human cancers, and high miR-103a-3p expression is associated with poor prognosis in advanced gastric cancer (GC) patients. Moreover, bioinformatics analysis has shown that miR-103a-3p is upregulated in The Cancer Genome Atlas (TCGA) stomach cancer cohort. These results suggest that miR-103a-3p may function as an oncogene in GC. The present study aimed to investigate the role of miR-103a-3p in human GC. miR-103a-3p expression levels were increased in 33 clinical GC specimens compared with adjacent nontumor stomach tissues. Gain- and loss-of-function studies were performed to identify the correlation between miR-103a-3p and tumorigenesis in human GC. Inhibiting miR-103a-3p suppressed GC cell proliferation and blocked the S-G2/M transition in MKN-45/SGC-7901 cells, whereas miR-103a-3p overexpression improved GC cell proliferation and promoted the S-G2/M transition in vitro. Bioinformatics and dual-luciferase reporter assays confirmed that ATF7 is a direct target of miR-103a-3p. Analysis of the TCGA stomach cancer cohort further revealed that miR-103a-3p expression was inversely correlated with ATF7 expression. Notably, silencing ATF7 showed similar cellular and molecular effects as miR-103a-3p overexpression, namely, increased GC cell proliferation, improved CDK2 expression and decreased P27 expression. ATF7 overexpression eliminated the effects of miR-103a-3p expression. These findings indicate that miR-103a-3p promotes the proliferation of GC cell by targeting and suppressing ATF7 in vitro.

Saturated fatty acid-inducible miR-103-3p impairs the myogenic differentiation of progenitor cells by enhancing cell proliferation through Twinfilin-1/F-actin/YAP1 axis

  • Mai Thi Nguyen;Wan Lee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.277-287
    • /
    • 2023
  • Actin dynamics play an essential role in myogenesis through multiple mechanisms, such as mechanotransduction, cell proliferation, and myogenic differentiation. Twinfilin-1 (TWF1), an actin-depolymerizing protein, is known to be required for the myogenic differentiation of progenitor cells. However, the mechanisms by which they epigenetically regulate TWF1 by microRNAs under muscle wasting conditions related to obesity are almost unknown. Here, we investigated the role of miR-103-3p in TWF1 expression, actin filament modulation, proliferation, and myogenic differentiation of progenitor cells. Palmitic acid, the most abundant saturated fatty acid (SFA) in the diet, reduced TWF1 expression and impeded myogenic differentiation of C2C12 myoblasts, while elevating miR-103-3p levels in myoblasts. Interestingly, miR-103-3p inhibited TWF1 expression by directly targeting its 3'UTR. Furthermore, ectopic expression of miR-103-3p reduced the expression of myogenic factors, i.e., MyoD and MyoG, and subsequently impaired myoblast differentiation. We demonstrated that miR-103-3p induction increased filamentous actin (F-actin) and facilitated the nuclear translocation of Yes-associated protein 1 (YAP1), thereby stimulating cell cycle progression and cell proliferation. Hence, this study suggests that epigenetic suppression of TWF1 by SFA-inducible miR-103-3p impairs myogenesis by enhancing the cell proliferation triggered by F-actin/YAP1.

PER3, a novel target of miR-103, plays a suppressive role in colorectal cancer in vitro

  • Hong, Zhang;Feng, Zhang;Sai, Zhang;Tao, Su
    • BMB Reports
    • /
    • v.47 no.9
    • /
    • pp.500-505
    • /
    • 2014
  • Colorectal cancer has become the third most common cancer and leads to high mortality worldwide. Although colorectal cancer has been studied widely, the underlying molecular mechanism remains unclear. PER3 is related to tumor differentiation and the progression of colorectal cancer. High expression of miR-103 is associated with poor prognosis in patients with colorectal cancer. However, the relationship between miR-103 and PER3 in CRC cells remains unclear. In this study, we found that PER3 was downregulated in CRC tissues and CRC cell lines, whereas miR-103 was upregulated in CRC cell lines. We also found that PER3 promoted CRC cells apoptosis. These results indicate that PER3 plays a suppressive role in CRC cells. Moreover, we found that PER3 was targeted, at least partially, by miR-103. Taken together, we provide evidence to characterize the role of PER3 in CRC, which may be a new therapeutic target for CRC.

Screening of MicroRNA in Patients with Esophageal Cancer at Same Tumor Node Metastasis Stage with Different Prognoses

  • Zhao, Bao-Sheng;Liu, Shang-Guo;Wang, Tian-Yun;Ji, Ying-Hua;Qi, Bo;Tao, Yi-Peng;Li, Han-Chen;Wu, Xiang-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.139-143
    • /
    • 2013
  • Patients at the same pathological stage of esophageal cancer (EC) that received the same surgical therapy by the same surgeon may have distinct prognoses. The current study aimed to explore the possibility of differentially-expressed microRNAs (miRNAs) underlying this phenomenon. Samples were collected from EC patients at the same tumor node metastasis (TNM) stage but with different prognoses. Paracancerous normal tissues were taken as controls. The specimens were histopathologically analyzed. Differentially-expressed miRNAs were analyzed using real-time quantitative reverse transcription polymerase chain reaction. Compared with patients with poor prognosis, those with good prognosis exhibited 88 two-fold or more than two-fold increased miRNA fragments and 4 half-decreased miRNAs. The most noticeably up-regulated miRNAs included hsa-miR-31, hsa-miR-196b, hsa-miR-652, hsa-miR-125a-5p, hsa-miR-146b, hsa-miR-200c, hsa-miR-23b, hsa-miR-29a, hsa-miR-186, hsa-miR-205, hsa-miR-376a, hsa-miR-410, hsa-miR-532-3p, and hsa-miR-598, whereas the most significantly-downregulated miRNAs were hsa-let-7e, hsa-miR-130b, and hsa-miR-103. EC patients at same TNM stage but with different prognoses show differentially-expressed miRNAs.

MiR-29a and MiR-140 Protect Chondrocytes against the Anti-Proliferation and Cell Matrix Signaling Changes by IL-1β

  • Li, Xianghui;Zhen, Zhilei;Tang, Guodong;Zheng, Chong;Yang, Guofu
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.103-110
    • /
    • 2016
  • As a degenerative joint disease, osteoarthritis (OA) constitutes a major cause of disability that seriously affects the quality of life of a large population of people worldwide. However, effective treatment that can successfully reverse OA progression is lacking until now. The present study aimed to determine whether two small non-coding RNAs miR-29a and miR-140, which are significantly down-regulated in OA, can be applied together as potential therapeutic targets for OA treatment. MiRNA synergy score was used to screen the miRNA pairs that potentially synergistically regulate OA. An in vitro model of OA was established by treating murine chondrocytes with IL-$1{\beta}$. Transfection of miR-29a and miR-140 via plasmids was investigated on chondrocyte proliferation and expression of nine genes such as ADAMTS4, ADAMTS5, ACAN, COL2A1, COL10A1, MMP1, MMP3, MMP13 and TIMP metallopeptidase inhibitor 1 (TIMP1). Western blotting was used to determine the protein expression level of MMP13 and TIMP1, and ELISA was used to detect the content of type II collagen. Combined use of miR-29a and miR-140 successfully reversed the destructive effect of IL-$1{\beta}$ on chondrocyte proliferation, and notably affected the MMP13 and TIMP1 gene expression that regulates extracellular matrix. Although co-transfection of miR-29a and miR-140 did not show a synergistic effect on MMP13 protein expression and type II collagen release, but both of them can significantly suppress the protein abundance of MMP13 and restore the type II collagen release in IL-$1{\beta}$ treated chondrocytes. Compared with single miRNA transfection, cotransfection of both miRNAs exceedingly abrogated the suppressed the protein production of TIMP1 caused by IL-$1{\beta}$, thereby suggesting potent synergistic action. These results provided1novel insights into the important function of miRNAs' collaboration in OA pathological development. The reduced MMP13, and enhanced TIMP1 protein production and type II collagen release also implies that miR-29a and miR-140 combination treatment may be a possible treatment for OA.

Characterization and Profiling of Liver microRNAs by RNA-sequencing in Cattle Divergently Selected for Residual Feed Intake

  • Al-Husseini, Wijdan;Chen, Yizhou;Gondro, Cedric;Herd, Robert M.;Gibson, John P.;Arthur, Paul F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1371-1382
    • /
    • 2016
  • MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate expression of mRNAs in many biological pathways. Liver plays an important role in the feed efficiency of animals and high and low efficient cattle demonstrated different gene expression profiles by microarray. Here we report comprehensive miRNAs profiles by next-gen deep sequencing in Angus cattle divergently selected for residual feed intake (RFI) and identify miRNAs related to feed efficiency in beef cattle. Two microRNA libraries were constructed from pooled RNA extracted from livers of low and high RFI cattle, and sequenced by Illumina genome analyser. In total, 23,628,103 high quality short sequence reads were obtained and more than half of these reads were matched to the bovine genome (UMD 3.1). We identified 305 known bovine miRNAs. Bta-miR-143, bta-miR-30, bta-miR-122, bta-miR-378, and bta-let-7 were the top five most abundant miRNAs families expressed in liver, representing more than 63% of expressed miRNAs. We also identified 52 homologous miRNAs and 10 novel putative bovine-specific miRNAs, based on precursor sequence and the secondary structure and utilizing the miRBase (v. 21). We compared the miRNAs profile between high and low RFI animals and ranked the most differentially expressed bovine known miRNAs. Bovine miR-143 was the most abundant miRNA in the bovine liver and comprised 20% of total expressed mapped miRNAs. The most highly expressed miRNA in liver of mice and humans, miR-122, was the third most abundant in our cattle liver samples. We also identified 10 putative novel bovine-specific miRNA candidates. Differentially expressed miRNAs between high and low RFI cattle were identified with 18 miRNAs being up-regulated and 7 other miRNAs down-regulated in low RFI cattle. Our study has identified comprehensive miRNAs expressed in bovine liver. Some of the expressed miRNAs are novel in cattle. The differentially expressed miRNAs between high and low RFI give some insights into liver miRNAs regulating physiological pathways underlying variation in this measure of feed efficiency in bovines.

Modification of cell wall structural carbohydrate in the hybrid poplar expressing Medicago R2R3-MYB transcription factor MtMYB70

  • Kim, Sun Hee;Choi, Young Im;Jin, Hyunjung;Shin, Soo-Jeong;Park, Jong-Sug;Kwon, Mi
    • Journal of Plant Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.93-103
    • /
    • 2015
  • The isolation, cloning, and characterization of an R2R3-MYB transcription factor gene (MtMYB70) from the model legume Medicago truncatula is reported. MtMYB70 consists of a 768-bp coding sequence corresponding to 255 amino acids. Sequence alignment revealed that MtMYB70 cDNA contains conserved R2R3-type MYB domains with highly divergent C terminal regions. MtMYB70 was found to have relatively low sequence homology with known R2R3-MYB genes. Phylogenetic analysis placed the R2R3-MYB domain of MtMYB70 closest to PtMYB1, a known activator of lignin biosynthesis. Overexpression of MtMYB70 under the control of the 35S promoter in transgenic poplar did not cause a significant difference in total lignin content relative to the control, but glucan content was significantly increased in transgenic poplar. Therefore, MtMYB70 might have regulatory role in the biosynthesis of cell wall structural carbohydrates.

103P/Hartley 2 혜성의 고분산 스펙트럼을 이용한 미확인 분광선 연구

  • Son, Mi-Rim;Kim, Sang-Jun;Sim, Chae-Gyeong;Lee, Chung-Uk;Lee, Dong-Ju
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • 2010년 10월 28일 근일점을 통과한 103P/Hartley 2 혜성의 분광학적 특징을 연구하고자 11월 6일과 11일 양일간 보현산 천문대의 고분산 에셀 분광기 BOES(R~30,000)로 관측을 하였다. 우리는 Hartley 2 혜성의 고분산 분광자료를 Hwang et al.(2009)의 Machholz(C/2004Q2)혜성 가시광 영역($4800{\sim}8100{\AA}$) 고분산 분광 자료와 비교 분석하였고 그 결과 C2, CN, NH2,H2O+의 방출선 뿐만 아니라 다수의 미확인 분광선을 발견하였다. 또한 발견된 미확인 분광선을 설명하기 위하여 향상된 NH2방출선과 OH 방출선 등의 후보 물질을 이용하여 미확인선의 원인 물질을 제시하고자 한다. 이 발표에서는 지금까지의 분석 결과를 소개한다.

  • PDF

Characteristics of Vibrio isolated from cultured file fish, Stephanolepis cirrhifer in Korea (우리나라 양식 쥐치, Stephanolepis cirrhifer에서 분리된 비브리오의 특성)

  • Lee, Bo-Young;Bang, Jong-Deuk;Cho, Mi-Young;Kim, Jin-Woo;Won, Kyoung-Mi;Cho, Young-Ah
    • Journal of fish pathology
    • /
    • v.24 no.2
    • /
    • pp.103-112
    • /
    • 2011
  • An epidemic was occurred in Stephanolepis cirrhifer during acclimation in laboratory tanks (water temperature was about $17^{\circ}C$). Diseased fish showed an unique external sign, large cloudy skin surface. We investigated the cause of the disease, and isolated one pure cultured bacterium, that was identified as Vibrio anguillarum by biochemical analysis and sequence analysis of the l6S rRNA and recA genes. During the outbreak, about 30% of S. cirrhifer showed the large cloudy skin surface, and approximately 10% of the stocked fish died. Fish were effectively cured by treatment with oxolinic acid.