DOI QR코드

DOI QR Code

miRNA-103a-3p Promotes Human Gastric Cancer Cell Proliferation by Targeting and Suppressing ATF7 in vitro

  • Hu, Xiaoyi (Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University) ;
  • Miao, Jiyu (Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University) ;
  • Zhang, Min (College of Life Science, Yanan University) ;
  • Wang, Xiaofei (Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University) ;
  • Wang, Zhenzhen (Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University) ;
  • Han, Jia (Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University) ;
  • Tong, Dongdong (Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University) ;
  • Huang, Chen (Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University)
  • Received : 2017.05.15
  • Accepted : 2018.03.15
  • Published : 2018.05.31

Abstract

Studies have revealed that miR-103a-3p contributes to tumor growth in several human cancers, and high miR-103a-3p expression is associated with poor prognosis in advanced gastric cancer (GC) patients. Moreover, bioinformatics analysis has shown that miR-103a-3p is upregulated in The Cancer Genome Atlas (TCGA) stomach cancer cohort. These results suggest that miR-103a-3p may function as an oncogene in GC. The present study aimed to investigate the role of miR-103a-3p in human GC. miR-103a-3p expression levels were increased in 33 clinical GC specimens compared with adjacent nontumor stomach tissues. Gain- and loss-of-function studies were performed to identify the correlation between miR-103a-3p and tumorigenesis in human GC. Inhibiting miR-103a-3p suppressed GC cell proliferation and blocked the S-G2/M transition in MKN-45/SGC-7901 cells, whereas miR-103a-3p overexpression improved GC cell proliferation and promoted the S-G2/M transition in vitro. Bioinformatics and dual-luciferase reporter assays confirmed that ATF7 is a direct target of miR-103a-3p. Analysis of the TCGA stomach cancer cohort further revealed that miR-103a-3p expression was inversely correlated with ATF7 expression. Notably, silencing ATF7 showed similar cellular and molecular effects as miR-103a-3p overexpression, namely, increased GC cell proliferation, improved CDK2 expression and decreased P27 expression. ATF7 overexpression eliminated the effects of miR-103a-3p expression. These findings indicate that miR-103a-3p promotes the proliferation of GC cell by targeting and suppressing ATF7 in vitro.

Keywords

References

  1. Arabpour, M., Mohammadparast, S., Maftouh, M., ShahidSales, S., Moieni, S., Akbarzade, H., Mirhafez, S.R., Parizadeh, S.M., Hassanian, S.M., and Avan, A. (2016). Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in gastric cancer: current status and future perspectives. Curr. Med. Chem. 23, 4135-4150. https://doi.org/10.2174/0929867323666160818093854
  2. Bang, Y.-J., Van Cutsem, E., Feyereislova, A., Chung, H.C., Shen, L., Sawaki, A., Lordick, F., Ohtsu, A., Omuro, Y., and Satoh, T. (2010). Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. The Lancet 376, 687-697. https://doi.org/10.1016/S0140-6736(10)61121-X
  3. Bray, F., Ren, J.S., Masuyer, E., and Ferlay, J. (2013). Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int. J. Cancer 132, 1133-1145. https://doi.org/10.1002/ijc.27711
  4. Chen, H.Y., Lin, Y.M., Chung, H.C., Lang, Y.D., Lin, C.J., Huang, J., Wang, W.C., Lin, F.M., Chen, Z., Huang, H.D., et al. (2012). miR- 103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res. 72, 3631-3641. https://doi.org/10.1158/0008-5472.CAN-12-0667
  5. Cho, W.J., Shin, J.M., Kim, J.S., Lee, M.R., Hong, K.S., Lee, J.H., Koo, K.H., Park, J.W., and Kim, K.S. (2009). miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2. Mol. Cells 28, 521-527. https://doi.org/10.1007/s10059-009-0158-0
  6. Garofalo, M., and Croce, C.M. (2011). microRNAs: Master regulators as potential therapeutics in cancer. Annu. Rev. Pharmacol. Toxicol. 51, 25-43. https://doi.org/10.1146/annurev-pharmtox-010510-100517
  7. Geng, L., Sun, B., Gao, B., Wang, Z., Quan, C., Wei, F., and Fang, X.D. (2014). MicroRNA-103 promotes colorectal cancer by targeting tumor suppressor DICER and PTEN. Int. J. Mol. Sci. 15, 8458-8472. https://doi.org/10.3390/ijms15058458
  8. Gozdecka, M., and Breitwieser, W. (2012). The roles of ATF2 (activating transcription factor 2). in tumorigenesis. Biochem. Soc. Trans. 40, 230-234. https://doi.org/10.1042/BST20110630
  9. Guo, C., Song, W.Q., Sun, P., Jin, L., and Dai, H.Y. (2015a). LncRNA- GAS5 induces PTEN expression through inhibiting miR-103 in endometrial cancer cells. J. Biomed. Sci. 22, 100. https://doi.org/10.1186/s12929-015-0213-4
  10. Guo, H.Q., Ye, S., Huang, G.L., Liu, L., Liu, O.F., and Yang, S.J. (2015b). Expression of activating transcription factor 7 is correlated with prognosis of colorectal cancer. J. Cancer Res. Therapeut. 11, 319-323. https://doi.org/10.4103/0973-1482.148688
  11. Hong, Z., Feng, Z., Sai, Z., and Tao, S. (2014). PER3, a novel target of miR-103, plays a suppressive role in colorectal cancer in vitro. BMB Rep. 47, 500-505. https://doi.org/10.5483/BMBRep.2014.47.9.212
  12. Kim, B.H., Hong, S.W., Kim, A., Choi, S.H., and Yoon, S.O. (2013). Prognostic implications for high expression of oncogenic microRNAs in advanced gastric carcinoma. J. Surg. Oncol. 107, 505-510. https://doi.org/10.1002/jso.23271
  13. Koizumi, W., Narahara, H., Hara, T., Takagane, A., Akiya, T., Takagi, M., Miyashita, K., Nishizaki, T., Kobayashi, O., and Takiyama, W. (2008). S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial).: a phase III trial. Lancet Oncol. 9, 215-221. https://doi.org/10.1016/S1470-2045(08)70035-4
  14. Koizumi, W., Kim, Y.H., Fujii, M., Kim, H.K., Imamura, H., Lee, K.H., Hara, T., Chung, H.C., Satoh, T., and Cho, J.Y. (2014). Addition of docetaxel to S-1 without platinum prolongs survival of patients with advanced gastric cancer: a randomized study (START). J. Cancer Res. Clin. Oncol. 140, 319-328. https://doi.org/10.1007/s00432-013-1563-5
  15. Liang, J., Liu, X., Xue, H., Qiu, B., Wei, B., and Sun, K. (2015). MicroRNA-103a inhibits gastric cancer cell proliferation, migration and invasion by targeting c-Myb. Cell Proliferation 48, 78-85. https://doi.org/10.1111/cpr.12159
  16. Lin, Y., Nie, Y., Zhao, J., Chen, X., Ye, M., Li, Y., Du, Y., Cao, J., Shen, B., and Li, Y. (2012). Genetic polymorphism at miR-181a binding site contributes to gastric cancer susceptibility. Carcinogenesis 33, 2377-2283. https://doi.org/10.1093/carcin/bgs292
  17. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2- ${\Delta}{\Delta}CT$ method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  18. Nonaka, R., Miyake, Y., Hata, T., Kagawa, Y., Kato, T., Osawa, H., Nishimura, J., Ikenaga, M., Murata, K., Uemura, M., et al. (2015). Circulating miR-103 and miR-720 as novel serum biomarkers for patients with colorectal cancer. Int. J. Oncol. 47, 1097-1102. https://doi.org/10.3892/ijo.2015.3064
  19. Rotkrua, P., Shimada, S., Mogushi, K., Akiyama, Y., Tanaka, H., and Yuasa, Y. (2013). Circulating microRNAs as biomarkers for early detection of diffuse-type gastric cancer using a mouse model. Br. J. Cancer 108, 932-940. https://doi.org/10.1038/bjc.2013.30
  20. Shen, L., Shan, Y.-S., Hu, H.-M., Price, T.J., Sirohi, B., Yeh, K.-H., Yang, Y.-H., Sano, T., Yang, H.-K., and Zhang, X. (2013). Management of gastric cancer in Asia: resource-stratified guidelines. Lancet Oncol. 14, e535-e547. https://doi.org/10.1016/S1470-2045(13)70436-4
  21. Shin, V.Y., Jin, H., Ng, E.K., Cheng, A.S., Chong, W.W., Wong, C.Y., Leung, W.K., Sung, J.J., and Chu, K.-M. (2011). NF-${\kappa}B$ targets miR-16 and miR-21 in gastric cancer: involvement of prostaglandin E receptors. Carcinogenesis 32, 240-245. https://doi.org/10.1093/carcin/bgq240
  22. Shivers, R.P., Pagano, D.J., Kooistra, T., Richardson, C.E., Reddy, K.C., Whitney, J.K., Kamanzi, O., Matsumoto, K., Hisamoto, N., and Kim, D.H. (2010). Phosphorylation of the conserved transcription factor ATF-7 by PMK-1 p38 MAPK regulates innate immunity in Caenorhabditis elegans. PLoS Genet. 6, e1000892. https://doi.org/10.1371/journal.pgen.1000892
  23. Shrestha, S., Hsu, S.D., Huang, W.Y., Huang, H.Y., Chen, W., Weng, S.L., and Huang, H.D. (2014). A systematic review of microRNA expression profiling studies in human gastric cancer. Cancer Med. 3, 878-888. https://doi.org/10.1002/cam4.246
  24. Strong, V.E., Wu, A.w., Selby, L.V., Gonen, M., Hsu, M., Song, K.Y., Park, C.H., Coit, D.G., Ji, J.f., and Brennan, M.F. (2015). Differences in gastric cancer survival between the US and China. J. Surg. Oncol.112, 31-37. https://doi.org/10.1002/jso.23940
  25. Tanabe, K., Suzuki, T., Tokumoto, N., Yamamoto, H., Yoshida, K., and Ohdan, H. (2010). Combination therapy with docetaxel and S-1 as a first-line treatment in patients with advanced or recurrent gastric cancer: a retrospective analysis. World J. Surg. Oncol. 8, 40. https://doi.org/10.1186/1477-7819-8-40
  26. Vinson, C., Myakishev, M., Acharya, A., Mir, A.A., Moll, J.R., and Bonovich, M. (2002). Classification of human B-ZIP proteins based on dimerization properties. Mol. Cell Biol. 22, 6321-6335. https://doi.org/10.1128/MCB.22.18.6321-6335.2002
  27. Vlahopoulos, S.A., Logotheti, S., Mikas, D., Giarika, A., Gorgoulis, V., and Zoumpourlis, V. (2008). The role of ATF-2 in oncogenesis. Bioessays 30, 314-327. https://doi.org/10.1002/bies.20734
  28. Walczynski, J., Lyons, S., Jones, N., and Breitwieser, W. (2014). Sensitisation of c-MYC-induced B-lymphoma cells to apoptosis by ATF2. Oncogene 33, 1027-1036. https://doi.org/10.1038/onc.2013.28
  29. Wang, X., Wu, X., Yan, L., and Shao, J. (2012). Serum miR-103 as a potential diagnostic biomarker for breast cancer. Nan fang yi ke da xue xue bao = J. Southern Med. Univ. 32, 631-634.
  30. Wu, Q., Yang, Z., Wang, F., Hu, S., Yang, L., Shi, Y., and Fan, D. (2013). MiR-19b/20a/92a regulates the self-renewal and proliferation of gastric cancer stem cells. J. Cell Sci. 126, 4220-4229. https://doi.org/10.1242/jcs.127944
  31. Xia, W., Ni, J., Zhuang, J., Qian, L., Wang, P., and Wang, J. (2016). MiR-103 regulates hepatocellular carcinoma growth by targeting AKAP12. Int. Biochem. Cell Biol. 71, 1-11. https://doi.org/10.1016/j.biocel.2015.11.017
  32. Zheng, Y.B., Xiao, K., Xiao, G.C., Tong, S.L., Ding, Y., Wang, Q.S., Li, S.B., and Hao, Z.N. (2016). MicroRNA-103 promotes tumor growth and metastasis in colorectal cancer by directly targeting LATS2. Oncol. Lett. 12, 2194-2200. https://doi.org/10.3892/ol.2016.4814

Cited by

  1. MiR-454-3p and miR-374b-5p suppress migration and invasion of bladder cancer cells through targetting ZEB2 vol.38, pp.6, 2018, https://doi.org/10.1042/bsr20181436
  2. Detection of novel biomarkers for early detection of Non-Muscle-Invasive Bladder Cancer using Competing Endogenous RNA network analysis vol.9, pp.None, 2018, https://doi.org/10.1038/s41598-019-44944-3
  3. Pituitary tissue-specific miR-7a-5p regulates FSH expression in rat anterior adenohypophyseal cells vol.7, pp.None, 2018, https://doi.org/10.7717/peerj.6458
  4. HER2 Upregulates ATF4 to Promote Cell Migration via Activation of ZEB1 and Downregulation of E-Cadherin vol.20, pp.9, 2019, https://doi.org/10.3390/ijms20092223
  5. Effects of miR-103a-3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5 vol.43, pp.5, 2019, https://doi.org/10.3892/ijmm.2019.4128
  6. Retracted Article: Exosome-derived PTENP1 suppresses cisplatin resistance of bladder cancer (BC) by suppressing cell proliferation, migration and inducing apoptosis via the miR-103a/PDCD4 axis vol.9, pp.64, 2018, https://doi.org/10.1039/c9ra07823a
  7. Long-Noncoding RNA FGD5-AS1 Enhances the Viability, Migration, and Invasion of Glioblastoma Cells by Regulating the miR-103a-3p/TPD52 Axis vol.12, pp.None, 2018, https://doi.org/10.2147/cmar.s253467
  8. miR-145-5p Regulates the Proliferation, Migration and Invasion in Cervical Carcinoma by Targeting KLF5 vol.13, pp.None, 2018, https://doi.org/10.2147/ott.s241366
  9. Identification of Early Recurrence Factors in Childhood and Adolescent B-Cell Acute Lymphoblastic Leukemia Based on Integrated Bioinformatics Analysis vol.10, pp.None, 2018, https://doi.org/10.3389/fonc.2020.565455
  10. MicroRNA-Based Combinatorial Cancer Therapy: Effects of MicroRNAs on the Efficacy of Anti-Cancer Therapies vol.9, pp.1, 2018, https://doi.org/10.3390/cells9010029
  11. Downregulation of HMGB1 by miR-103a-3p Promotes Cell Proliferation, Alleviates Apoptosis and in Flammation in a Cell Model of Osteoarthritis vol.18, pp.1, 2018, https://doi.org/10.30498/ijb.2020.129470.2255
  12. LncRNA SNHG17 aggravated prostate cancer progression through regulating its homolog SNORA71B via a positive feedback loop vol.11, pp.5, 2020, https://doi.org/10.1038/s41419-020-2569-y
  13. Downregulation of LINC00707 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by regulating DKK1 via targeting miR-103a-3p vol.46, pp.3, 2018, https://doi.org/10.3892/ijmm.2020.4672
  14. Current perspectives on the dysregulated microRNAs in gastric cancer vol.47, pp.9, 2018, https://doi.org/10.1007/s11033-020-05720-z
  15. Comprehensive analysis of circular RNA expression profiles in cisplatin-resistant non-small cell lung cancer cell lines vol.52, pp.9, 2018, https://doi.org/10.1093/abbs/gmaa085
  16. Elevation of FGD5-AS1 contributes to cell progression by improving cisplatin resistance against non-small cell lung cancer cells through regulating miR-140-5p/WEE1 axis vol.755, pp.None, 2020, https://doi.org/10.1016/j.gene.2020.144886
  17. Down-regulation of lncRNA UCA1 enhances radiosensitivity in prostate cancer by suppressing EIF4G1 expression via sponging miR-331-3p vol.20, pp.None, 2018, https://doi.org/10.1186/s12935-020-01538-8
  18. miR-103a-3p Could Attenuate Sepsis-Induced Liver Injury by Targeting HMGB1 vol.43, pp.6, 2018, https://doi.org/10.1007/s10753-020-01275-0
  19. Comparative Transcriptome Provides a Systematic Perspective on Epstein-Barr Virus-Associated Gastric Carcinoma Cell Lines vol.14, pp.None, 2018, https://doi.org/10.2147/ott.s332513
  20. Comprehensive Analysis of Survival-Related lncRNAs, miRNAs, and mRNAs Forming a Competing Endogenous RNA Network in Gastric Cancer vol.12, pp.None, 2018, https://doi.org/10.3389/fgene.2021.610501
  21. miR-149 Suppresses the Proliferation and Metastasis of Human Gastric Cancer Cells by Targeting FOXC1 vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/1503403
  22. MicroRNA-103a-3p Promotes Cell Proliferation and Invasion in Non-Small-Cell Lung Cancer Cells through Akt Pathway by Targeting PTEN vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/7590976
  23. rno-miR-128-3p promotes apoptosis in rat granulosa cells (GCs) induced by norepinephrine through Wilms tumor 1 (WT1) vol.57, pp.8, 2021, https://doi.org/10.1007/s11626-021-00609-y
  24. miR-103a-3p Suppresses Cell Proliferation and Invasion by Targeting Tumor Protein D52 in Prostate Cancer vol.34, pp.9, 2021, https://doi.org/10.1080/08941939.2020.1738602
  25. Circulating microRNA‑103a‑3p could be a diagnostic and prognostic biomarker for breast cancer vol.23, pp.1, 2021, https://doi.org/10.3892/ol.2021.13156
  26. Circular RNA circ_0000592 elevates ANXA4 expression via sponging miR-1179 to facilitate tumor progression in gastric cancer vol.33, pp.1, 2018, https://doi.org/10.1097/cad.0000000000001216
  27. The role of non-coding RNAs in ferroptosis regulation vol.70, pp.None, 2018, https://doi.org/10.1016/j.jtemb.2021.126911