Browse > Article
http://dx.doi.org/10.5713/ajas.15.0605

Characterization and Profiling of Liver microRNAs by RNA-sequencing in Cattle Divergently Selected for Residual Feed Intake  

Al-Husseini, Wijdan (The Centre for Genetics Analysis and Applications, School of Environmental and Rural Science, University of New England)
Chen, Yizhou (NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute)
Gondro, Cedric (The Centre for Genetics Analysis and Applications, School of Environmental and Rural Science, University of New England)
Herd, Robert M. (NSW Department of Primary Industries, Beef Industry Centre)
Gibson, John P. (The Centre for Genetics Analysis and Applications, School of Environmental and Rural Science, University of New England)
Arthur, Paul F. (NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.10, 2016 , pp. 1371-1382 More about this Journal
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate expression of mRNAs in many biological pathways. Liver plays an important role in the feed efficiency of animals and high and low efficient cattle demonstrated different gene expression profiles by microarray. Here we report comprehensive miRNAs profiles by next-gen deep sequencing in Angus cattle divergently selected for residual feed intake (RFI) and identify miRNAs related to feed efficiency in beef cattle. Two microRNA libraries were constructed from pooled RNA extracted from livers of low and high RFI cattle, and sequenced by Illumina genome analyser. In total, 23,628,103 high quality short sequence reads were obtained and more than half of these reads were matched to the bovine genome (UMD 3.1). We identified 305 known bovine miRNAs. Bta-miR-143, bta-miR-30, bta-miR-122, bta-miR-378, and bta-let-7 were the top five most abundant miRNAs families expressed in liver, representing more than 63% of expressed miRNAs. We also identified 52 homologous miRNAs and 10 novel putative bovine-specific miRNAs, based on precursor sequence and the secondary structure and utilizing the miRBase (v. 21). We compared the miRNAs profile between high and low RFI animals and ranked the most differentially expressed bovine known miRNAs. Bovine miR-143 was the most abundant miRNA in the bovine liver and comprised 20% of total expressed mapped miRNAs. The most highly expressed miRNA in liver of mice and humans, miR-122, was the third most abundant in our cattle liver samples. We also identified 10 putative novel bovine-specific miRNA candidates. Differentially expressed miRNAs between high and low RFI cattle were identified with 18 miRNAs being up-regulated and 7 other miRNAs down-regulated in low RFI cattle. Our study has identified comprehensive miRNAs expressed in bovine liver. Some of the expressed miRNAs are novel in cattle. The differentially expressed miRNAs between high and low RFI give some insights into liver miRNAs regulating physiological pathways underlying variation in this measure of feed efficiency in bovines.
Keywords
Bovine; Feed Efficiency; Gene Expression; miRNAs; Next Generation Sequencing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lu, J., G. Getz, E. A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B. L. Ebert, R. H. Mak, A. A. Ferrando, J. R. Downing, T. Jacks, H. R. Horvitz, and T. R. Golub. 2005. MicroRNA expression profiles classify human cancers. Nature 435:834-838.   DOI
2 Miles J. R., T. G. McDaneld, R. T. Wiedmann, R. A. Cushman, S. E. Echternkamp, J. L. Vallet, and T. P. L. Smith. 2012. MicroRNA expression profile in bovine cumulus-oocyte complexes: Possible role of let-7 and miR-106a in the development of bovine oocytes. Anim. Reprod. Sci. 130:16-26.   DOI
3 Pandey, A. K., G. Verma, S. Vig, S. Srivastava, A. K. Srivastava, and M. Datta. 2011. miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells. Mol. Cell. Endocrinol. 332:125-133.   DOI
4 Romao, J. M., W. Jin, M. He, T. McAllister, and L. L. Guan. 2012. Altered MicroRNA expression in bovine subcutaneous and visceral adipose tissues from cattle under different diet. PLoS One. 7:e40605.   DOI
5 Rottiers, V. and A. M. Naar. 2012. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol. 13:239-250.   DOI
6 Sherman, E. L., J. D. Nkrumah, C. Li, R. Bartusiak, B. Murdoch, and S. S. Moore. 2009. Fine mapping quantitative trait loci for feed intake and feed efficiency in beef cattle. J. Anim. Sci. 87:37-45.   DOI
7 Tripurani, S. K., C. Xiao, M. Salem, and J. Yao. 2010. Cloning and analysis of fetal ovary microRNAs in cattle. Anim. Reprod. Sci. 120:16-22.   DOI
8 Vejnar, C. E. and E. M. Zdobnov. 2012. miRmap: Comprehensive prediction of microRNA target repression strength. Nucl. Acids Res. 40:11673-11683.   DOI
9 Wen, J. and J. R. Friedman. 2012. miR-122 regulates hepatic lipid metabolism and tumor suppression. J. Clin. Invest. 122:2773-2776.   DOI
10 Yang, J. S., M. D. Phillips, D. Betel, P. Mu, A. Ventura, A. C. Siepel, K. C. Chen, and E. C. Lai. 2011. Widespread regulatory activity of vertebrate microRNA* species. RNA. 17:312-326.   DOI
11 Yu, Z., Z. Jian, S. H. Shen, E. Purisima, and E. Wang. 2007. Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and Drosophila tissues than in the embryos. Nucl. Acids Res. 35:152-164.   DOI
12 Gardner, P. P., J. Daub, J. G. Tate, E. P. Nawrocki, D. L. Kolbe, S. Lindgreen, A. C. Wilkinson, R. D. Finn, S. Griffiths-Jones, S. R. Eddy, and A. Bateman. 2009. Rfam: updates to the RNA families database. Nucl. Acids Res. 37:D136-D140.   DOI
13 Anders, S. and W. Huber. 2010. Differential expression analysis for sequence count data. Genome Biol. 11:R106.   DOI
14 Arthur, P. F., J. A. Archer, D. J. Johnston, R. M. Herd, E. C. Richardson, and P. F. Parnell. 2001. Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. J. Anim. Sci. 79:2805-2811.   DOI
15 Chen, Y., C. Gondro, K. Quinn, R. M. Herd, P. F. Parnell, and B. Vanselow. 2011. Global gene expression profiling reveals genes expressed differentially in cattle with high and low residual feed intake. Anim. Genet. 42:475-490.   DOI
16 Donoghue, K. A., P. F. Arthur, J. F. Wilkins, and R. M. Herd. 2011. Onset of puberty and early-life reproduction in Angus females divergently selected for post-weaning residual feed intake. Anim. Prod. Sci. 51:183-190.   DOI
17 Fatima, A., D. J. Lynn, P. O'Boyle, C. Seoighe, and D. Morris. 2014. The miRNAome of the postpartum dairy cow liver in negative energy balance. BMC Genomics 15:279.   DOI
18 Kozomara, A. and S. Griffiths-Jones. 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucl. Acids. Res. 42:D68-D73.   DOI
19 Gu, Z., S. Eleswarapu, and H. Jiang. 2007. Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Lett. 581:981-988.   DOI
20 Hackenberg, M., N. Rodriguez-Ezpeleta, and A. M. Aransay. 2011. miRanalyzer: An update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucl. Acids Res. 39:W132-W138.   DOI
21 Hu, J., Y. Xu, J. Hao, S. Wang, C. Li, and S. Meng. 2012. MiR-122 in hepatic function and liver diseases. Protein Cell. 3:364-371.   DOI
22 Jin, W., J. R. Grant, P. Stothard, S. S. Moore, and L. L. Guan. 2009. Characterization of bovine miRNAs by sequencing and bioinformatics analysis. BMC Mol. Biol. 10:90.   DOI
23 Kozomara, A. and S. Griffiths-Jones. 2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucl. Acids Res. 39:D152-D157.   DOI
24 Jordan, S. D., M. Kruger, D. M. Willmes, N. Redemann, F. T. Wunderlich, H. S. Bronneke, C. Merkwirth, H. Kashkar, V. M. Olkkonen, T. Bottger, T. Braun, J. Seibler, and J. C. Bruning. 2011. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat. Cell Biol. 13:434-446.   DOI
25 Koch, R. M., L. A. Swiger, D. Chambers, and K. E. Gregory. 1963. Efficiency of feed use in beef cattle. J. Anim. Sci. 22:486-494.   DOI
26 Kornfeld, J. W., C. Baitzel, A. C. Konner, H. T. Nicholls, M. C. Vogt, K. Herrmanns, L. Scheja, C. Haumaitre, A. M. Wolf, U. Knippschild, J. Seibler, S. Cereghini, J. Heeren, M. Stoffel, and J. C. Bruning. 2013. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 494:111-115.   DOI
27 Langmead, B., C. Trapnell, M. Pop, and S. L. Salzberg. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10:R25.   DOI
28 Lawless, N., A. B. Foroushani, M. S. McCabe, C. O'Farrelly, and D. J. Lynn. 2013. Next Generation sequencing reveals the expression of a unique miRNA profile in response to a grampositive bacterial infection. PLoS One. 8:e57543.   DOI
29 Lewis, A. P. and C. L. Jopling. 2010. Regulation and biological function of the liver-specific miR-122. Biochem. Soc. Trans. 38:1553-1557.   DOI
30 Liu, H. C., J. A. Hicks, N. Trakooljul, and S. H. Zhao. 2010. Current knowledge of microRNA characterization in agricultural animals. Anim. Genet. 41:225-231.   DOI