• 제목/요약/키워드: metrology

검색결과 723건 처리시간 0.04초

Determination of Toxic Elements in Polymer Materials Using Instrumental Neutron Activation Analysis

  • Park, Kwang-Won;Lee, Joung-Hae;Cho, Kyung-Haeng;Min, Hyung-Sik;Lim, Myung-Chul;Choi, Duk-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권7호
    • /
    • pp.1391-1394
    • /
    • 2008
  • Polymer materials are very difficult to decompose for the purpose of chemical analysis. Nondestructive analysis without pretreatment provides a suitable solution that will overcome this obstacle. In this study, CRM candidate samples that contained toxic elements such as As, Cd, Cr and Zn in a polypropylene (PP) were analyzed using instrumental neutron activation analysis (INAA). The analytical results were obtained from ten samples selected by random sampling at two different concentration levels (low and high). Particular attention was paid to reducing analytical errors and evaluating the associated uncertainty.

Experimental Measurement and Monte Carlo Simulation the Correction Factor for the Medium-Energy X-ray Free-air Ionization Chamber

  • Yu, Jili;Wu, Jinjie;Liao, Zhenyu;Zhou, Zhenjie
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1466-1472
    • /
    • 2018
  • A key comparison has been made between the air-kerma standards of the National Institute of Metrology (NIM), China, and other Asia Pacific Metrology Programme (APMP) members in the medium-energy X-ray. This paper reviews the primary standard Free-air ionization chamber correction factor experimental method and Monte Carlo simulation method in the NIM. The experimental method and the Monte Carlo simulation method are adopted to obtain the correction factor for the medium-energy X-ray primary standard free-air ionization chamber at 100 kV, 135 kV, 180 kV, 250 kV four CCRI reference qualities. The correction factor has already been submitted to the APMP as key comparison data and the results are in good agreement with those obtained in previous studies. This study shows that the experimental method and the EGSnrc simulation method are usually used in the measurement of the correction factor. In particular, the application of the simulation methods is more common.

Recursive Least Squares Run-to-Run Control with Time-Varying Metrology Delays

  • Fan, Shu-Kai;Chang, Yuan-Jung
    • Industrial Engineering and Management Systems
    • /
    • 제9권3호
    • /
    • pp.262-274
    • /
    • 2010
  • This article investigates how to adaptively predict the time-varying metrology delay that could realistically occur in the semiconductor manufacturing practice. Metrology delays pose a great challenge for the existing run-to-run (R2R) controllers, driving the process output significantly away from target if not adequately predicted. First, the expected asymptotic double exponentially weighted moving average (DEWMA) control output, by using the EWMA and recursive least squares (RLS) prediction methods, is derived. It has been found that the relationships between the expected control output and target in both estimation methods are parallel, and six cases are addressed. Within the context of time-varying metrology delay, this paper presents a modified recursive least squares-linear trend (RLS-LT) controller, in combination with runs test. Simulated single input-single output (SISO) R2R processes subject to various time-varying metrology delay scenarios are used as a testbed to evaluate the proposed algorithms. The simulation results indicate that the modified RLS-LT controller can yield the process output more accurately on target with smaller mean squared error (MSE) than the original RLSLT controller that only deals with constant metrology delays.

나노 힘 측정 및 표준 (Nano Force Metrology and Standards)

  • 김민석;박연규;최재혁;김종호;강대임
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.59-62
    • /
    • 2005
  • Small force measurements ranging from 1 pN to $100{\mu}N$, we call it Nano Force, become the questions of common interests of biomechanics, nanomechanics, material researches, and so on. However, unfortunately, quantitative and accurate force measurements have not been taken so far. This is because there ,are no traceable force standards and a calibration scheme. This paper introduces a quantitative force metrology, which provides traceable link to SI (International Systems of Units). We realize SI traceable force ranging from 1 nN to $100{\mu}N$ using an electrostatic balance and disseminate it through transfer standards, which are self-sensing cantilevers that have integrated piezoresistive strain gages. We have been built a prototype electrostatic balance and Nano Force Calibrator (NFC), which is an AFM cantilever calibration system. As a first experiment, we calibrated normal spring constants of commercial AFM cantilevers using NFC. Calibration results show that the spring constants of them are quite differ from each other and nominal values provided by a manufacturer (up to 240% deviation).

  • PDF

Fabrication of High-purity Rb Vapor Cell for Electric Field Sensing

  • Jae-Keun Yoo;Deok-Young Lee;Sin Hyuk Yim;Hyun-Gue Hong;Sun Do Lim;Seung Kwan Kim;Young-Pyo Hong;No-Weon Kang;In-Ho Bae
    • Current Optics and Photonics
    • /
    • 제7권2호
    • /
    • pp.207-212
    • /
    • 2023
  • In this paper, we introduce our system for manufacturing a Rb vapor cell and describe its fabrication process in a sequence of removing impurities, cold trapping, and sealing off. Saturated absorption spectroscopy was performed to verify the quality of our cell by comparing it to that of a commercial one. By using the lab-fabricated Rb vapor cell, we observed electromagnetically induced transparency in a ladder-type system corresponding to the 5S1/2-5P3/2-28D5/2 transition of the 85Rb atom. A highly excited Rydberg atomic system was prepared using two counter-propagating external cavity diode lasers with wavelengths of 780 nm and 480 nm. We also observed the Autler-Townes splitting signal while a radio-frequency source around 100 GHz incidents into the Rydberg atomic medium.

Determination of Dibutyltin in Sediments Using Isotope Dilution Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry

  • Yim, Yong-Hyeon;Park, Ji-Youn;Han, Myung-Sub;Park, Mi-Kyung;Kim, Byung-Joo;Lim, Young-Ran;Hwang, Eui-Jin;So, Hun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권3호
    • /
    • pp.440-446
    • /
    • 2005
  • A method is described for the determination of dibutyltin (DBT) in sediment by isotope dilution using liquid chromatography inductively-coupled plasma/mass spectrometry (LC-ICP/MS). To achieve the highest accuracy and precision, special attentions are paid in optimization and evaluation of overall processes of the analysis including extraction of analytes, characterization of the standards used for calibration and LC-ICP/MS conditions. An approach for characterization of natural abundance DBT standard has been developed by combining inductively-coupled plasma/optical emission spectrometry (ICP/OES) and LC-ICP/MS for the total Sn assay and the analysis of Sn species present as impurities, respectively. An excellent LC condition for separation of organotin species was found, which is suitable for simultaneous DBT and tributyltin (TBT) analysis as well as impurity analysis of DBT standards. Microwave extraction condition was also optimized for high efficiency while preventing species transformation. The present method determines the amount contents of DBT in sediments with expanded uncertainty of less than 5% and its result shows high degree of equivalence with reference values of an international inter-comparison and a certified reference material (CRM) within stated uncertainties.