• Title/Summary/Keyword: metric space

Search Result 724, Processing Time 0.034 seconds

NOTE ON REAL HYPERSURFACES OF NONFLAT COMPLEX SPACE FORMS IN TERMS OF THE STRUCTURE JACOBI OPERATOR AND RICCI TENSOR

  • KIM, NAM-GIL;LI, CHUNJI;KI, U-HANG
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.487-504
    • /
    • 2005
  • Let M be a real hypersurface with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g) in a nonflat complex space form $M_n(c)$. We denote by A and S be the shape operator and the Ricci tensor of M respectively. In the present paper we investigate real hypersurfaces with $g(SA{\xi},\;A{\xi})=const$. of $M_n(c)$ whose structure Jacobi operator $R_{\xi}$ commute with both ${\phi}$ and S. We give a characterization of Hopf hypersurfaces of $M_n(c)$.

  • PDF

STRUCTURAL PROJECTIONS ON A JBW-TRIPLE AND GL-PROJECTIONS ON ITS PREDUAL

  • Hugli, Remo-V.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.107-130
    • /
    • 2004
  • A $JB^{*}-triple$ is a Banach space A on which the group Aut(B) of biholomorphic automorphisms acts transitively on the open unit ball B of A. In this case, a triple product {$\cdots$} from $A\;\times\;A\;\times\;A\;to\;A$ can be defined in a canonical way. If A is also the dual of some Banach space $A_{*}$, then A is said to be a JBW triple. A projection R on A is said to be structural if the identity {Ra, b, Rc} = R{a, Rb, c, }holds. On $JBW^{*}-triples$, structural projections being algebraic objects by definition have also some interesting metric properties, and it is possible to give a full characterization of structural projections in terms of the norm of the predual $A_{*}$ of A. It is shown, that the class of structural projections on A coincides with the class of the adjoints of neutral GL-projections on $A_{*}$. Furthermore, the class of GL-projections on $A_{*}$ is naturally ordered and is completely ortho-additive with respect to L-orthogonality.

ON DUALITY OF WEIGHTED BLOCH SPACES IN ℂn

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.523-534
    • /
    • 2010
  • In this paper, we consider the weighted Bloch spaces ${\mathcal{B}}_q$(q > 0) on the open unit ball in ${\mathbb{C}}^n$. We prove a certain integral representation theorem that is used to determine the degree of growth of the functions in the space ${\mathcal{B}}_q$ for q > 0. This means that for each q > 0, the Banach dual of $L_a^1$ is ${\mathcal{B}}_q$ and the Banach dual of ${\mathcal{B}}_{q,0}$ is $L_a^1$ for each $q{\geq}1$.

Application of Quadratic Algebraic Curve for 2D Collision-Free Path Planning and Path Space Construction

  • Namgung, Ihn
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.107-117
    • /
    • 2004
  • A new algorithm for planning a collision-free path based on an algebraic curve as well as the concept of path space is developed. Robot path planning has so far been concerned with generating a single collision-free path connecting two specified points in a given robot workspace with appropriate constraints. In this paper, a novel concept of path space (PS) is introduced. A PS is a set of points that represent a connection between two points in Euclidean metric space. A geometry mapping (GM) for the systematic construction of path space is also developed. A GM based on the 2$^{nd}$ order base curve, specifically Bezier curve of order two is investigated for the construction of PS and for collision-free path planning. The Bezier curve of order two consists of three vertices that are the start, S, the goal, G, and the middle vertex. The middle vertex is used to control the shape of the curve, and the origin of the local coordinate (p, $\theta$) is set at the centre of S and G. The extreme locus of the base curve should cover the entire area of actual workspace (AWS). The area defined by the extreme locus of the path is defined as quadratic workspace (QWS). The interference of the path with obstacles creates images in the PS. The clear areas of the PS that are not mapped by obstacle images identify collision-free paths. Hence, the PS approach converts path planning in Euclidean space into a point selection problem in path space. This also makes it possible to impose additional constraints such as determining the shortest path or the safest path in the search of the collision-free path. The QWS GM algorithm is implemented on various computer systems. Simulations are carried out to measure performance of the algorithm and show the execution time in the range of 0.0008 ~ 0.0014 sec.

An Efficient Split Algorithm to Minimize the Overlap between Node Index Spaces in a Multi-dimensional Indexing Scheme M-tree (다차원 색인구조 M-트리에서 노드 색인 공간의 중첩을 최소화하기 위한 효율적인 분할 알고리즘)

  • Im Sang-hyuk;Ku Kyong-I;Kim Ki-chang;Kim Yoo-Sung
    • The KIPS Transactions:PartD
    • /
    • v.12D no.2 s.98
    • /
    • pp.233-246
    • /
    • 2005
  • To enhance the user response time of content-based retrieval service for multimedia information, several multi-dimensional index schemes have been proposed. M-tree, a well-known multidimensional index scheme is of metric space access method, and is based on the distance between objects in the metric space. However, since the overlap between index spaces of nodes might enlarge the number of nodes of M-tree accessed for query processing, the user response time for content-based multimedia information retrieval grows longer. In this paper, we propose a node split algorithm which is able to reduce the sire of overlap between index spaces of nodes in M-tree. In the proposed scheme, we choose a virtual center point as the routing object and entry redistribution as the postprocessing after node split in order to reduce the radius of index space of a node, and finally in order to reduce the overlap between the index spaces of routing nodes. From the experimental results, we can see the proposed split algorithm reduce the overlap between index space of nodes and finally enhance the user response time for similarity-based query processing.

Chaotic Evaluation of Slag Inclusion Welding Defect Time Series Signals Considering the Hyperspace (초공간을 고려한 슬래그 혼입 용접 결함 시계열 신호의 카오스성 평가)

  • Yi, Won;Yun, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.226-235
    • /
    • 1998
  • This study proposes the analysis and evaluation of method of time series of ultrasonic signal using the chaotic feature extraction for ultrasonic pattern recognition. The features are extracted from time series data for analysis of weld defects quantitatively. For this purpose, analysis objectives in this study are fractal dimension, Lyapunov exponent, and strange attractor on hyperspace. The Lyapunov exponent is a measure of rate in which phase space diverges nearby trajectories. Chaotic trajectories have at least one positive Lyapunov exponent, and the fractal dimension appears as a metric space such as the phase space trajectory of a dynamical system. In experiment, fractal(correlation) dimensions and Lyapunov exponents show the mean value of 4.663, and 0.093 relatively in case of learning, while the mean value of 4.926, and 0.090 in case of testing in slag inclusion(weld defects) are shown. Therefore, the proposed chaotic feature extraction can be enhancement of precision rate for ultrasonic pattern recognition in defecting signals of weld zone, such as slag inclusion.

  • PDF

Minimization of Warpage in Plastic Injection-Molded Parts Based on the ‘Pick-the-Winner' Rule and Design Space Reduction Method (Pick-the-Winner법과 공간축소법에 기반한 플라스틱 사출성형품의 휨 최소화)

  • Park, Jong-Cheon;Kim, Kyung-Mo;Kim, Kwang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1171-1177
    • /
    • 2010
  • This paper presents a robust design procedure for minimizing warpage in plastic injection-molded products, where the Pick-the-Winner rule based on Taguchi's Orthogonal Array experiments and the Design Space Reduction Method are integrated for optimization. Two-step optimization approach is applied to reduce warpage in the part design stage and additionally to minimize the warpage in the process conditions design stage. Taguchi's S/N ratio is introduced as a design metric to evaluate robustness against process variations. The effectiveness of proposed optimization process is shown with an example of warpage minimization problem.

Design of nonlinear optimal regulators using lower dimensional riemannian geometric models

  • Izawa, Yoshiaki;Hakomori, Kyojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.628-633
    • /
    • 1994
  • A new Riemannian geometric model for the controlled plant is proposed by imbedding the control vector space in the state space, so as to reduce the dimension of the model. This geometric model is derived by replacing the orthogonal straight coordinate axes on the state space of a linear system with the curvilinear coordinate axes. Therefore the integral manifold of the geometric model becomes homeomorphic to that of fictitious linear system. For the lower dimensional Riemannian geometric model, a nonlinear optimal regulator with a quadratic form performance index which contains the Riemannian metric tensor is designed. Since the integral manifold of the nonlinear regulator is determined to be homeomorphic to that of the linear regulator, it is expected that the basic properties of the linear regulator such as feedback structure, stability and robustness are to be reflected in those of the nonlinear regulator. To apply the above regulator theory to a real nonlinear plant, it is discussed how to distort the curvilinear coordinate axes on which a nonlinear plant behaves as a linear system. Consequently, a partial differential equation with respect to the homeomorphism is derived. Finally, the computational algorithm for the nonlinear optimal regulator is discussed and a numerical example is shown.

  • PDF

Suboptimum detection of space-time trellis coded OFDM over slowly fading channel (느린 페이딩 채널에서 공간-시간 트렐리스 부호화된 OFDM의 준최적 검파)

  • Kim, Young-Ju;Li, Xun;Park, Noe-Yoon;Lee, In-Sung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.28-33
    • /
    • 2007
  • We present a space-time trellis coded OFDM system in flow fading channels. Generalized principal ratio combining (GPRC) is also analyzed theoretically in frequency domain. The analysis show that the decoding metric of GPRC include the metrics of maximum likelihood (ML) and PRC. The computer simulations with M-PSK modulation are obtained in frequency flat and frequency selective lading channels. The decoding complexity and simulation running times are also evaluated among the decoding schemes.

Multi-granular Angle Description for Plant Leaf Classification and Retrieval Based on Quotient Space

  • Xu, Guoqing;Wu, Ran;Wang, Qi
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.663-676
    • /
    • 2020
  • Plant leaf classification is a significant application of image processing techniques in modern agriculture. In this paper, a multi-granular angle description method is proposed for plant leaf classification and retrieval. The proposed method can describe leaf information from coarse to fine using multi-granular angle features. In the proposed method, each leaf contour is partitioned first with equal arc length under different granularities. And then three kinds of angle features are derived under each granular partition of leaf contour: angle value, angle histogram, and angular ternary pattern. These multi-granular angle features can capture both local and globe information of the leaf contour, and make a comprehensive description. In leaf matching stage, the simple city block metric is used to compute the dissimilarity of each pair of leaf under different granularities. And the matching scores at different granularities are fused based on quotient space theory to obtain the final leaf similarity measurement. Plant leaf classification and retrieval experiments are conducted on two challenging leaf image databases: Swedish leaf database and Flavia leaf database. The experimental results and the comparison with state-of-the-art methods indicate that proposed method has promising classification and retrieval performance.