• Title/Summary/Keyword: methods: N-body simulations

Search Result 15, Processing Time 0.024 seconds

Large-scale Structure Studies with Mock Galaxy Sample from the Horizon Run 4 & Multiverse Simulations

  • Hong, Sungwook E.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.29.3-29.3
    • /
    • 2020
  • Cosmology is a study to understand the origin, fundamental property, and evolution of the universe. Nowadays, many observational data of galaxies have become available, and one needs large-volume numerical simulations with good quality of the spatial distribution for a fair comparison with observation data. On the other hand, since galaxies' evolution is affected by both gravitational and baryonic effects, it is nontrivial to populate galaxies only by N-body simulations. However, full hydrodynamic simulations with large volume are computationally costly. Therefore, alternative galaxy assignment methods to N-body simulations are necessary for successful cosmological studies. In this talk, I would like to introduce the MBP-galaxy abundance matching. This novel galaxy assignment method agrees with the spatial distribution of observed galaxies between 0.1Mpc ~ 100Mpc scales. I also would like to introduce mock galaxy catalogs of the Horizon Run 4 and Multiverse simulations, large-volume cosmological N-body simulations done by the Korean community. Finally, I would like to introduce some recent works with those mock galaxies used to understand our universe better.

  • PDF

GRAPE AND PROJECT MILKYWAY

  • MAKINO JUNICHIRO
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.165-168
    • /
    • 2005
  • We overview the GRAPE (GRAvity piPE) project. The goal of the GRAPE project is to accelerate the astrophysical N-body simulations. Since almost all computing time is spent for the evaluation of the gravitational force between particles, we can greatly accelerate many N-body simulations by developing a specialized hardware for the force calculation. In 1989, the first such hardware, GRAPE-1, was completed, with the peak speed of 120 Mflops. In 2003, GRAPE-6 was completed, with the peak speed of 64 Tflops, which is nearly 106 times faster than GRAPE-l and was the fastest computer at that time. In this paper, we review the basic concept of the GRAPE hardwares, the history of the GRAPE project, and two ongoing projects, GRAPE-DR and Project Milkyway.

THE NEW HORIZON RUN COSMOLOGICAL N-BODY SIMULATIONS

  • Kim, Ju-Han;Park, Chang-Bom;Rossi, Graziano;Lee, Sang-Min;Gott, J. Richard III
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.6
    • /
    • pp.217-234
    • /
    • 2011
  • We present two large cosmological N-body simulations, called Horizon Run 2 (HR2) and Horizon Run 3 (HR3), made using $6000^3$ = 216 billions and $7210^3$ = 374 billion particles, spanning a volume of $(7.200\;h^{-1}Gpc)^3$ and $(10.815\;h^{-1}Gpc)^3$, respectively. These simulations improve on our previous Horizon Run 1 (HR1) up to a factor of 4.4 in volume, and range from 2600 to over 8800 times the volume of the Millennium Run. In addition, they achieve a considerably finer mass resolution, down to $1.25{\times}10^{11}h^{-1}M_{\odot}$, allowing to resolve galaxy-size halos with mean particle separations of $1.2h^{-1}$Mpc and $1.5h^{-1}$Mpc, respectively. We have measured the power spectrum, correlation function, mass function and basic halo properties with percent level accuracy, and verified that they correctly reproduce the CDM theoretical expectations, in excellent agreement with linear perturbation theory. Our unprecedentedly large-volume N-body simulations can be used for a variety of studies in cosmology and astrophysics, ranging from large-scale structure topology, baryon acoustic oscillations, dark energy and the characterization of the expansion history of the Universe, till galaxy formation science - in connection with the new SDSS-III. To this end, we made a total of 35 all-sky mock surveys along the past light cone out to z = 0.7 (8 from the HR2 and 27 from the HR3), to simulate the BOSS geometry. The simulations and mock surveys are already publicly available at http://astro.kias.re.kr/Horizon-Run23/.

DYNAMICAL EVOLUTION OF ROTATING SINGLE-MASS STELLAR CLUSTER

  • ARDI ELIANI;SPURZEM RAINER;MINESHIGE SHIN
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.207-210
    • /
    • 2005
  • We study the influence of rotation on the dynamical evolution of collisional single-mass stellar clusters up to core-collapse by using N-body simulations. Rotating King models which are characterized by dimensionless central potential parameter $W_o$ and the rotation parameter $W_o$ are used as initial models. Our results show that inner shells slowly contract until core-collapse phase is reached, followed by a slow expansion. Angular momentum is transported outward, while the core is rotating even faster than before, as predicted by gravogyro catastrophe theory. We confirm that rotation plays an important role in accelerating the dynamical evolution of stellar cluster, in particular in accelerating the core collapse.

SIMULATIONS OF THE INTERACTING MAGELLANIC SYSTEM

  • GARDINER LANCE T.;NOGUCHI MASAFUMI
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.93-94
    • /
    • 1996
  • The Galaxy and the Large and Small Magellanic Clouds (LMC and SMC respectively) form a triple system of mutually interacting galaxies. We have carried out a set of N-body simulations on the gravitational interaction of the SMC with the Galaxy and the LMC in order to model prominent features such as the Magellanic Stream, the inter-Cloud Bridge, and the large depth of the SMC which are thought to be products of the tidal interactions among the members of this system.

  • PDF

Identifying potential mergers of globular clusters: a machine-learning approach

  • Pasquato, Mario
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.89-89
    • /
    • 2014
  • While the current consensus view holds that galaxy mergers are commonplace, it is sometimes speculated that Globular Clusters (GCs) may also have undergone merging events, possibly resulting in massive objects with a strong metallicity spread such as Omega Centauri. Galaxies are mostly far, unresolved systems whose mergers are most likely wet, resulting in observational as well as modeling difficulties, but GCs are resolved into stars that can be used as discrete dynamical tracers, and their mergers might have been dry, therefore easily simulated with an N-body code. It is however difficult to determine the observational parameters best suited to reveal a history of merging based on the positions and kinematics of GC stars, if evidence of merging is at all observable. To overcome this difficulty, we investigate the applicability of supervised and unsupervised machine learning to the automatic reconstruction of the dynamical history of a stellar system. In particular we test whether statistical clustering methods can classify simulated systems into monolithic versus merger products. We run direct N-body simulations of two identical King-model clusters undergoing a head-on collision resulting in a merged system, and other simulations of isolated King models with the same total number of particles as the merged system. After several relaxation times elapse, we extract a sample of snapshots of the sky-projected positions of particles from each simulation at different dynamical times, and we run a variety of clustering and classification algorithms to classify the snapshots into two subsets in a relevant feature space.

  • PDF

FLY-BY ENCOUNTERS BETWEEN DARK MATTER HALOS IN COSMOLOGICAL SIMULATIONS

  • AN, SUNG-HO;KIM, JEONGHWAN H.;YUN, KIYUN;KIM, JUHAN;YOON, SUK-JIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.331-333
    • /
    • 2015
  • Gravitational interactions - mergers and fly-by encounters - between galaxies play a key role as the drivers of their evolution. Here we perform a cosmological N-body simulation using the tree-particle-mesh code GOTPM, and attempt to separate out the effects of mergers and fly-bys between dark matter halos. Once close pair halos are identified by the halo finding algorithm PSB, they are classified into mergers ($E_{12}$ < 0) and fly-by encounters ($E_{12}$ > 0) based on the total energy ($E_{12}$) between two halos. The fly-by and merger fractions as functions of redshift, halo masses, and ambient environments are calculated and the result shows the following.(1) Among Milky-way sized halos ($0.33-2.0{\times}10^{12}h^{-1}M{\odot}$), $5.37{\pm}0.03%$ have experienced major fly-bys and $7.98{\pm}0.04%$ have undergone major mergers since z ~ 1; (2) Among dwarf halos ($0.1-0.33{\times}10^{12}h^{-1}M{\odot}$), $6.42{\pm}0.02%$ went through major fly-bys and $9.51{\pm}0.03%$ experienced major mergers since z ~ 1; (3) Milky-way sized halos in the cluster environment experienced fly-bys (mergers) 4-11(1.5-1.7) times more frequently than those in the field since z ~ 1; and (4) Approaching z = 0, the fly-by fraction decreases sharply with the merger fraction remaining constant, implying that the empirical pair/merger fractions (that decrease from z ~ 1) are in fact driven by the fly-bys, not by the mergers themselves.

A Comparison of Halo Merger History for Two Different Simulation Codes : GADGET-2 and RAMSES

  • Jung, In-Tae;Yi, Suk-Young K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2012
  • We present our study on a comparison of dark matter halo merger history from the runs using different numerical simulation codes. To analyze the uncertainty caused by the use of different N-body calculation methods, we compare the results from two cosmological hydrodynamic simulation codes GADGET-2 and RAMSES, which use a TreePM algorithm and the Adaptive Mesh Refinement(AMR) technique respectively. We perform cosmological dark matter-only simulations with the same parameter set and initial condition for both. The dark matter halo mass functions from two simulation runs correspond well with each other, except for lower mass haloes. The discrepancy on the low-mass haloes in turn causes a notable difference in halo merger rate, especially for the case of extremely minor merger. The result from GADGET-2 predicts that most haloes undergo more number of mergers with small haloes than that from RAMSES, independent of halo mass and environment. However, in the context of the study on galaxy evolution, such extreme minor mergers generally do not have strong effects on galaxy properties such as morphology or star formation history. Hence, we suggest that this uncertainty could be quantitatively negligible, and the results from two simulations are reliable even with only minor difference in merger history.

  • PDF

CLUSTERS OF GALAXIES: SHOCK WAVES AND COSMIC RAYS

  • RYU DONGSU;KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.105-110
    • /
    • 2003
  • Recent observations of galaxy clusters in radio and X-ray indicate that cosmic rays and magnetic fields may be energetically important in the intracluster medium. According to the estimates based on theses observational studies, the combined pressure of these two components of the intracluster medium may range between $10\%{\~}100\%$ of gas pressure, although their total energy is probably time dependent. Hence, these non-thermal components may have influenced the formation and evolution of cosmic structures, and may provide unique and vital diagnostic information through various radiations emitted via their interactions with surrounding matter and cosmic background photons. We suggest that shock waves associated with cosmic structures, along with individual sources such as active galactic nuclei and radio galaxies, supply the cosmic rays and magnetic fields to the intracluster medium and to surrounding large scale structures. In order to study 1) the properties of cosmic shock waves emerging during the large scale structure formation of the universe, and 2) the dynamical influence of cosmic rays, which were ejected by AGN-like sources into the intracluster medium, on structure formation, we have performed two sets of N-body /hydrodynamic simulations of cosmic structure formation. In this contribution, we report the preliminary results of these simulations.

INTERGALACTIC MEDIUM IN THE ACDM UNIVERSE FROM COSMOLOGICAL SIMULATIONS

  • FENG LONG-LONG;HE PING;FANG LIZHI;SHU CHI-WANG;ZHANG MENG-PING
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.129-133
    • /
    • 2005
  • The temperature (T) and entropy (S) fields of baryonic gas, or intergalactic medium (IGM), in the ACDM cosmology are analyzed using simulation samples produced by a hybrid cosmological hydrodynamic/N-body code based on the weighted essentially non-oscillatory scheme. We demonstrate that, in the nonlinear regime, the dynamical similarity between the IGM and dark matter will be broken in the presence of strong shocks in the IGM. The heating and entropy production by the shocks breaks the IGM into multiple phases. The multiphase and non-Gaussianity of the IGM field would be helpful to account for the high-temperature and high-entropy gas observed in groups and clusters with low-temperature IGM observed by Ly$\alpha$ forest lines and the intermittency observed by the spikes of quasi-stellar object's absorption spectrum.