Browse > Article
http://dx.doi.org/10.5303/JKAS.2005.38.2.129

INTERGALACTIC MEDIUM IN THE ACDM UNIVERSE FROM COSMOLOGICAL SIMULATIONS  

FENG LONG-LONG (Purple Mountain Observatory)
HE PING (Department of Physics, University of Arizona)
FANG LIZHI (Department of Physics, University of Arizona)
SHU CHI-WANG (Division of Applied Mathematics, Brown University)
ZHANG MENG-PING (Department of Mathematics, University of Science and Technology of China)
Publication Information
Journal of The Korean Astronomical Society / v.38, no.2, 2005 , pp. 129-133 More about this Journal
Abstract
The temperature (T) and entropy (S) fields of baryonic gas, or intergalactic medium (IGM), in the ACDM cosmology are analyzed using simulation samples produced by a hybrid cosmological hydrodynamic/N-body code based on the weighted essentially non-oscillatory scheme. We demonstrate that, in the nonlinear regime, the dynamical similarity between the IGM and dark matter will be broken in the presence of strong shocks in the IGM. The heating and entropy production by the shocks breaks the IGM into multiple phases. The multiphase and non-Gaussianity of the IGM field would be helpful to account for the high-temperature and high-entropy gas observed in groups and clusters with low-temperature IGM observed by Ly$\alpha$ forest lines and the intermittency observed by the spikes of quasi-stellar object's absorption spectrum.
Keywords
cosmology: theory; intergalactic medium; large-scale structure of the universe; methods: numerical;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hui, L., & Gnedin, N.Y., 1997, MNRAS, 292, 27   DOI   ScienceOn
2 Jamkhedkar, P., Zhan, H., & Fang, L.Z. 2000, ApJ, 543, L1   DOI   ScienceOn
3 Kay, S., & Bower, R. 1999, MNRAS, 308, 664   DOI
4 Nusser, A., & Haehnelt, M. 1999, MNRAS, 303,179   DOI   ScienceOn
5 Ponman, T., Sanderson, A., & Finoguenov, A. 2003, MNRAS, 343, 331   DOI   ScienceOn
6 Jamkhedkar, P., Feng, L.L., Zheng, W., Kirkman, D., Tytler, D., & Fang, L.Z. 2003, MNRAS, 343, 1110   DOI   ScienceOn
7 Jiang, G., & Shu, C.W. 1996, J. Comput. Phys., 126, 202   DOI   ScienceOn
8 Katz, N., Weinberg, D.H., & Hernquist, L. 1996, ApJS, 105, 19   DOI
9 Ryu, D., Ostriker, O., Kang, H., & Cen, R. 1993, ApJ, 414, 1   DOI   ScienceOn
10 Shandarin, S.F., & Zel'dovich, Ya.B. 1989, Rev. Mod. Phys., 61, 185   DOI
11 Borgani, S., Governato, F., Wadsley, J., Menci, N., Tozzi, P., Quinn, T., Stadel, J, & Lake, G. 2002, MNRAS, 336, 409   DOI   ScienceOn
12 Bi, H.G., Borner, G., & Chu, Y.Q. 1992, A&A, 266,1
13 Bi, H.G., & Davidsen, A. F. 1997, ApJ, 479, 523   DOI   ScienceOn
14 Cen, R. 1992, ApJS, 78, 341   DOI
15 Cen, R., & Ostriker, J. 1999, ApJ, 514, 1   DOI   ScienceOn
16 Dave, R., Cen, R., Ostriker, J., Bryan, G.L., Hernquist, L., Katz, N., Weinberg, D.H., Norman, M.L., & O'Shea, B. 2001, ApJ, 552, 473   DOI   ScienceOn
17 Shu, C.W. 1998, in Advanced Numerical Approximation
18 Fang, L.Z., Bi, H.G., Xiang, S.P, & Borner, G. 1993, ApJ, 413, 477   DOI
19 Feng, L.L., Pando, J., & Fang, L.Z. 2003, ApJ, 587, 487   DOI   ScienceOn
20 Feng, L.L., Shu, C.W., & Zhang, M.P. 2004, ApJ, 612, 1   DOI   ScienceOn
21 He, P., Feng, L.L., & Fang, L.Z. 2004, ApJ, 612, 14   DOI   ScienceOn