Browse > Article
http://dx.doi.org/10.5303/JKAS.2011.44.6.217

THE NEW HORIZON RUN COSMOLOGICAL N-BODY SIMULATIONS  

Kim, Ju-Han (Center for Advanced Computation, Korea Institute for Advanced Study)
Park, Chang-Bom (School of Physics, Korea Institute for Advanced Study)
Rossi, Graziano (School of Physics, Korea Institute for Advanced Study)
Lee, Sang-Min (Supercomputing Center, KISTI)
Gott, J. Richard III (Department of Astrophysical Sciences, Princeton University)
Publication Information
Journal of The Korean Astronomical Society / v.44, no.6, 2011 , pp. 217-234 More about this Journal
Abstract
We present two large cosmological N-body simulations, called Horizon Run 2 (HR2) and Horizon Run 3 (HR3), made using $6000^3$ = 216 billions and $7210^3$ = 374 billion particles, spanning a volume of $(7.200\;h^{-1}Gpc)^3$ and $(10.815\;h^{-1}Gpc)^3$, respectively. These simulations improve on our previous Horizon Run 1 (HR1) up to a factor of 4.4 in volume, and range from 2600 to over 8800 times the volume of the Millennium Run. In addition, they achieve a considerably finer mass resolution, down to $1.25{\times}10^{11}h^{-1}M_{\odot}$, allowing to resolve galaxy-size halos with mean particle separations of $1.2h^{-1}$Mpc and $1.5h^{-1}$Mpc, respectively. We have measured the power spectrum, correlation function, mass function and basic halo properties with percent level accuracy, and verified that they correctly reproduce the CDM theoretical expectations, in excellent agreement with linear perturbation theory. Our unprecedentedly large-volume N-body simulations can be used for a variety of studies in cosmology and astrophysics, ranging from large-scale structure topology, baryon acoustic oscillations, dark energy and the characterization of the expansion history of the Universe, till galaxy formation science - in connection with the new SDSS-III. To this end, we made a total of 35 all-sky mock surveys along the past light cone out to z = 0.7 (8 from the HR2 and 27 from the HR3), to simulate the BOSS geometry. The simulations and mock surveys are already publicly available at http://astro.kias.re.kr/Horizon-Run23/.
Keywords
cosmological parameters; cosmology: theory; large-scale structure of the Universe; galaxies: formation; methods: N-body simulations;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Gott, J. R., Choi, Y.-Y., Park, C., & Kim, J. 2009, Three-Dimensional Genus Topology of Luminous Red Galaxies, ApJ, 695, 45
2 Gott, J. R., et al. 2008, Genus Topology of Structure in the Sloan Digital Sky Survey: Model Testing, ApJ, 675, 16
3 Gott, J. R., Juric, M., Schlegel, D., Hoyle, F., Vogeley, M., Tegmark, M., Bahcall, N., & Brinkmann, J. 2005, A Map of the Universe, ApJ, 624, 463   DOI
4 Gott, J. R., Dickinson, M., & Melott, A. L. 1986, The Sponge-Like Topology of Large-Scale Structure in the Universe, ApJ, 306, 341   DOI
5 Governato, F., Babul, A., Quinn, T., et al. 1999, Properties of Galaxy Clusters: Mass and Correlation Functions, MNRAS, 307, 949   DOI
6 Green, J., et al. 2011, Wide-Field InfraRed Survey Telescope (WFIRST) Interim Report, arXiv: 1108.1374
7 Groth, E. J., & Peebles, P. J. E. 1975, N-Body Studies of the Clustering of Galaxies, BAAS, 7, 425
8 Henon, M., & Heiles, C. 1964, The Applicability of the Third Integral of Motion: Some Numerical Experiments, AJ, 69, 73   DOI
9 Hill, G. J., Gebhardt, K., Komatsu, E., & MacQueen, P. J. 2004, The Hobby-Eberly Telescope Dark Energy Experiment, AIPC, 743, 224
10 nkins, A., et al. 2001, The Mass Function of Dark Matter Haloes, MNRAS, 321, 372   DOI   ScienceOn
11 Jee, I., Park, C., & Kim, J. 2011, A Second-Order Bias Model for the Logarithmic Halo Mass Density, ApJ, submitted
12 Desjacques, V., & Seljak, U. 2010, Signature of Primor- dial Non-Gaussianity of 3 Type in the Mass Func- tion and Bias of Dark Mtter Haloes, Phys. Rev. D., 81, 3006
13 Desjacques, V., Seljak, U., & Iliev, I. T. 2009, Scale- Dependent Bias Induced by Local Non-Gaussianity: a Comparison to N-Body Simulations, MNRAS, 396, 85   DOI   ScienceOn
14 Diemand, J., & Moore, B. 2009, The Structure and Evolution of Cold Dark Matter Halos, arXiv:0906.4340
15 Diemand, J., Kuhlen, M., Madau, P., Zemp, M., Moore, B., Potter, D., & Stadel, J. 2008, Clumps and Streams in the Local Dark Matter Distribution, Nature, 454, 735   DOI   ScienceOn
16 Diemand, J., Moore, B., & Stadel, J. 2004, Convergence and Scatter of Cluster Density Profiles, MNRAS, 353, 624   DOI   ScienceOn
17 elb, J. M., & Bertschinger, E. 1994, Cold Dark Matter. 1: The Formation of Dark Halos, ApJ, 436, 467   DOI
18 Dubinski, J., Kim, J., Park, C., & Humble, R. 2004, GOTPM: a Parallel Hybrid Particle-Mesh Treecode, New Astronomy, 9, 111   DOI   ScienceOn
19 Efstathiou, G., & Eastwood, J. W. 1981, On the Clustering of Particles in an Expanding Universe, MNRAS, 194, 503   DOI
20 isenstein, D. J., et al. 2005, Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, ApJ, 633, 560   DOI
21 Eisenstein, D. J., & Hu, W. 1999, Power Spectra for Cold Dark Matter and Its Variants, ApJ, 511, 5   DOI
22 isenstein, D. J., & Hu, W. 1998, Baryonic Features in the Matter Transfer Function, ApJ, 496, 605   DOI
23 Gao, L., et al. 2008, The Redshift Dependence of the Structure of Massive Cold Dark Matter Haloes, MNRAS, 387, 536   DOI   ScienceOn
24 Cole, S., et al. 2005, The 2dF Galaxy Redshift Survey: Power-Spectrum Analysis of the Final Data Set and Cosmological Implications, MNRAS, 362, 505   DOI   ScienceOn
25 Choi, Y.-Y., Park, C., Kim, J., Gott, J. R., Weinberg, D. H., Vogeley, M. S., & Kim, S. S. 2010, Galaxy Clustering Topology in the Sloan Digital Sky Survey Main Galaxy Sample: A Test for Galaxy Formation Models, ApJS, 190, 181   DOI
26 Cimatti, A., et al. 2008, GMASS Ultradeep Spec- troscopy of Galaxies at z -2. II. Superdense Passive Galaxies: How Did They Form and Evolve?, A&A, 482, 21   DOI   ScienceOn
27 Colberg, J. M., White, S. D. M., Yoshida, N., et al. 2000, Clustering of Galaxy Clusters in Cold Dark Matter Universes, MNRAS, 319, 209   DOI
28 Colless, M., et al. 2001, The 2dF Galaxy Redshift Sur- vey: Spectra and Redshifts, MNRAS, 328, 1039   DOI   ScienceOn
29 Crocce, M., & Scoccimarro, R. 2008, Nonlinear Evolu- tion of Baryon Acoustic Oscillations, Phys. Rev. D., 77, 3533
30 Crocce, M., Pueblas, S., & Scoccimarro, R. 2006, Transients from Initial Conditions in Cosmological Simulations, MNRAS, 373, 369   DOI   ScienceOn
31 Crotts, A., et al. 2005, Joint Efficient Dark-energy Investigation (JEDI): a Candidate Implementation of the NASA-DOE Joint Dark Energy Mission (JDEM), astro-ph/0507043
32 Dalal, N., Dore, O., Huterer, D., & Shirokov, A. 2008, Imprints of Primordial Non-Gaussianities on Large-Scale Structure: Scale-Dependent Bias and Abundance of Virialized Objects, Phys. Rev. D., 77, 123514   DOI
33 Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, The Evolution of Large-Scale Struc- ture in a Universe Dominated by Cold Dark Matter, ApJ, 292, 371   DOI
34 Bertschinger, E. 1998, Simulations of Structure Formation in the Universe, ARAA, 36, 599   DOI   ScienceOn
35 Aarseth, S. J., Turner, E. L., & Gott, J. R. 1979, N-Body Simulations of Galaxy Clustering. I - Initial Conditions and Galaxy Collapse Times, ApJ, 228, 664   DOI
36 Abbott, T., et al. 2005, The Dark Energy Survey, astro-ph/0510346
37 Albrecht, A., et al. 2006, Report of the Dark Energy Task Force, astro-ph/0609591
38 Bett, P., Eke, V., Frenk, C. S., Jenkins, A., Helly, J., & Navarro, J. 2007, The Spin and Shape of Dark Matter Haloes in the Millennium Simulation of a  Cold Dark Matter Universe, MNRAS, 376, 215   DOI   ScienceOn
39 Blake, C., et al. 2008, The Wiggle Z Dark Energy Survey, Astronomy & Geophysics, 49, 19
40 Bode, P., Bahcall, N. A., Ford, E. B., & Ostriker, J. P. 2001, Evolution of the Cluster Mass Function: GPC3 Dark Matter Simulations, ApJ, 551, 15   DOI
41 Carlberg, R. G., & Couchman, H. M. P. 1989, Mergers and Bias in a Cold Dark Matter Cosmology, ApJ, 340, 47   DOI
42 Zheng, Z., & Weinberg, D. H. 2007, Breaking the Degeneracies between Cosmology and Galaxy Bias, ApJ, 659, 1   DOI
43 Carnero, A., Sanchez, E., Crocce, M., Cabre, A., & Gaztanaga, E. 2011, Clustering of Photometric Luminous Red Galaxies - II. Cosmological Implications from the Baryon Acoustic Scale, arXiv:1104.5426
44 White, S. D. M., Davis, M., Efstathiou, G., & Frenk, C. S. 1987, Galaxy Distribution in a Cold Dark Matter Universe, Nature, 330, 451   DOI
45 White, S. D. M., & Rees, M. J. 1978, Core Condensation in Heavy Halos - A Two-Stage Theory for Galaxy Formation and Clustering, MNRAS, 183, 341   DOI
46 Yoo, J., Fitzpatrick, A. L., & Zaldarriaga, M. 2009, New Perspective on Galaxy Clustering as a Cos- mological Probe: General Relativistic Effects, Phys. Rev. D., 80, 3514
47 York, D. G., et al. 2000, The Sloan Digital Sky Survey: Technical Summary, AJ, 120, 1579   DOI   ScienceOn
48 Zurek, W. H., Quinn, P. J., Salmon, J. K., & Warren, M. S. 1994, Large-Scale Structure after COBE: Peculiar Velocities and Correlations of Cold Dark Matter Halos, ApJ, 431, 559   DOI
49 Springel, V., et al. 2005, Simulations of the Formation, Evolution and Clustering of Galaxies and Quasars, Nature, 435, 629   DOI   ScienceOn
50 Springel, V., et al. 2008, The Aquarius Project: the Subhaloes of Galactic Haloes, MNRAS, 391, 1685   DOI   ScienceOn
51 Stadel, J., et al. 2009, Quantifying the Heart of Darkness with GHALO - a Multibillion Particle Simulation of a Galactic Halo, MNRAS, 398, 21   DOI   ScienceOn
52 Sugiyama, N. 1995, Cosmic Background Anisotropies in Cold Dark Matter Cosmology, ApJS, 100, 281   DOI
53 Suto, Y., & Suginohara, T. 1991, Redshift-Space Correlation Functions in the Cold Dark Matter Scenario, ApJL, 370, L15   DOI
54 eyssier, R., et al. 2009, Full-Sky Weak-Lensing Simulation with 70 Billion Particles, A&A, 497, 335   DOI
55 Tyson, J. A., & LSST 2004, The Large Synoptic Survey Telescope Science Requirements, AAS, 20510801
56 Wambsganss, J., Bode, P., & Ostriker, J. P. 2004, Giant Arc Statistics in Concord with a Concordance Lambda Cold Dark Matter Universe, ApJL, 606, L93   DOI
57 van Albada, G. B. 1961, Evolution of Clusters of Galaxies under Gravitational Forces, AJ, 66, 590   DOI
58 Verde, L., & Matarrese, S. 2009, Detectability of the Effect of Inflationary Non-Gaussianity on Halo Bias, ApJ, 706, 91   DOI
59 ogeley, M. S., Park, C., Geller, M. J., & Huchra, J. P. 1992, Large-Scale Clustering of Galaxies in the CfA Redshift Survey, ApJ, 391, 5   DOI
60 Warren, M. S., Quinn, P. J., Salmon, J. K., & Zurek, W. H. 1992, Dark Halos Formed via Dissipationless Collapse. I - Shapes and Alignment of Angular Momentum, ApJ, 399, 405   DOI
61 White, S. D. M. 1976, The Dynamics of Rich Clusters of Galaxies, MNRAS, 177, 717   DOI
62 Perlmutter, S., et al. 1999, Measurements of Omega and Lambda from 42 High-Redshift Supernovae, ApJ, 517, 565   DOI
63 Press, W. H., & Schechter, P. 1974, Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation, ApJ, 187, 425   DOI
64 Reed, D., et al. 2005, Evolution of the Density Profiles of Dark Matter Haloes, MNRAS, 357, 82   DOI   ScienceOn
65 Reid, B. A., et al. 2010, Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies, MNRAS, 404, 60   DOI   ScienceOn
66 Riess, A. G., et al. 1998, Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, AJ, 116, 1009   DOI   ScienceOn
67 Schlegel, D., White, M., & Eisenstein, D. 2009, The Baryon Oscillation Spectroscopic Survey: Precision measurement of the absolute cosmic distance scale, The Astronomy and Astrophysics Decadal Survey, Science White Papers, 314
68 Sanchez, A. G., Crocce, M., Cabre, A., Baugh, C. M., & Gaztanaga, E. 2009, Cosmological Parameter Constraints from SDSS Luminous Red Galaxies: a New Treatment of Large-Scale Clustering, MNRAS, 400, 1643   DOI   ScienceOn
69 Sanchez, A. G., et al. 2006, Cosmological Parameters from Cosmic Microwave Background Measurements and the Final 2dF Galaxy Redshift Survey Power Spectrum, MNRAS, 366, 189   DOI   ScienceOn
70 Schlegel, D., et al. 2011, The BigBOSS Experiment, arXiv: 1106.1706
71 Shandarin, S., Habib, S., & Heitmann, K. 2010, Origin of the Cosmic Network in $\Lambda$CDM: Nature vs Nurture, Phys. Rev. D., 81, 3006
72 Spergel, D. N., et al. 2003, First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters, ApJS, 148, 175   DOI   ScienceOn
73 Park, C. 1997, A Particle-Mesh Code for the Next Generation Cosmological N-Body Simulations, JKAS, 30, 191   과학기술학회마을
74 Park, C. 1990, Large N-Body Simulations of a Universe Dominated by Cold Dark Matter MNRAS, 242, 59   DOI
75 Park C., & Kim, Y. R. 2010, Large-Scale Structure of the Universe as a Cosmic Standard Ruler, ApJL, 715, L185   DOI
76 Park, C., Kim, J., & Gott, J. R. 2005, Effects of Gravitational Evolution, Biasing, and Redshift Space Distortion on Topology, ApJ, 633, 1   DOI
77 Peebles, P. J. E. 1982, The Peculiar Velocity around a Hole in the Galaxy Distribution, ApJ, 257, 438   DOI
78 Park, C., Colley,W. N., Gott, J. R., Ratra, B., Spergel, D. N., & Sugiyama, N. 1998, Cosmic Microwave Background Anisotropy Correlation Function and Topology from Simulated Maps for MAP, ApJ, 506, 473   DOI
79 Park, C., Vogeley, M. S., Geller, M. J., & Huchra, J. P. 1994, Power Spectrum, Correlation Function, and Tests for Luminosity Bias in the CfA Redshift Survey, ApJ, 431, 569   DOI
80 Park, C., & Gott, J. R. 1991, Simulation of Deep One-and Two-Dimensional Redshift Surveys, MNRAS, 249, 288   DOI
81 Peebles, P. J. E. 1970, Structure of the Coma Cluster of Galaxies, ApJ, 75, 13   DOI
82 Percival, W. J., et al. 2010, Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy Sample, MNRAS, 401, 2148   DOI   ScienceOn
83 Percival, W. J., Cole, S., Eisenstein, D. J., Nichol, R. C., Peacock, J. A., Pope, A. C., & Szalay, A. S. 2007, Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey, MNRAS, 381, 1053   DOI   ScienceOn
84 Kowalski, M., et al. 2008, Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets, ApJ, 686, 749   DOI
85 Li, Y., Mo, H. J., & Gao, L. 2008, On Halo Formation Times and Assembly Bias, MNRAS, 389, 1419   DOI   ScienceOn
86 LoVerde, M., Hui, L., & Gaztanaga, E. 2008, Lensing Corrections to Features in the Angular Two-Point Correlation Function and Power Spectrum, Phys. Rev. D., 77, 3512
87 Lukic, J., Heitmann, K., Habib, S., Bashinsky, S., & Ricker, P. M. 2007, The Halo Mass Function: High- Redshift Evolution and Universality, ApJ, 671, 1160   DOI
88 Miyoshi, K., & Kihara, T. 1975, Development of the Correlation of Galaxies in an Expanding Universe, PASJ, 27, 333
89 Maccio, A. V., Dutton, A. A., van den Bosch, F. C., Moore, B., Potter, D., & Stadel, J. 2007, Concentration, Spin and Shape of Dark Matter Haloes: Scatter and the Dependence on Mass and Environment, MNRAS, 378, 55   DOI   ScienceOn
90 Matsubara, T. 2004, Correlation Function in Deep Redshift Space as a Cosmological Probe, ApJ, 615, 573   DOI
91 Montesano, F., Sanchez, A. G., & Phleps, S. 2010, A New Model for the Full Shape of the Large-Scale Power Spectrum, MNRAS, 408, 2397   DOI   ScienceOn
92 Moore, B., Governato, F., Quinn, T., Stadel, J., & Lake, G. 1998, Resolving the Structure of Cold Dark Matter Halos, ApJ, 499, 5   DOI
93 Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, A Universal Density Profile from Hierarchical Clustering, ApJ, 490, 493   DOI
94 Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, The Structure of Cold Dark Matter Halos, ApJ, 462, 563   DOI
95 Neto, A., et al. 2007, The Statistics of CDM Halo Concentrations, MNRAS, 381, 1450   DOI   ScienceOn
96 Jenkins, A., Frenk, C. S., Pearce, F. R., et al. 1998, Evolution of Structure in Cold Dark Matter Universes, ApJ, 499, 20   DOI
97 Jeong, D., & Komatsu, E. 2009, Primordial Non- Gaussianity, Scale-dependent Bias, and the Bispec- trum of Galaxies, ApJ, 703, 1230   DOI
98 ing, Y. P., Suto, Y., & Mo, H. J. 2007, The Dependence of Dark Halo Clustering on Formation Epoch and Concentration Parameter, ApJ, 657, 664
99 Kaiser, N., et al. 2002, Pan-STARRS: A Large Synoptic Survey Telescope Array, Proc. SPIE, 4836, 154
100 ing, Y. P., & Suto, Y. 2002, Triaxial Modeling of Halo Density Profiles with High-Resolution N-Body Simulations, ApJ, 574, 538
101 Kazin, E. A., Blanton, M. R., Scoccimarro, R., McBride, C. K., & Berlind, A. A. 2010, The Baryonic Acoustic Feature and Large-Scale Clustering in the Sloan Digital Sky Survey Luminous Red Galaxy Sample, ApJ, 710, 1444   DOI
102 Kim, J., Park, C., Gott, J. R., & Dubinski, J. 2009, The Horizon Run N-Body Simulation: Baryon Acoustic Oscillations and Topology of Large-scale Structure of the Universe, ApJ, 701, 1547   DOI
103 Kim, J., Park, C., & Choi, Y.-Y. 2008, A Subhalo- Galaxy Correspondence Model of Galaxy Biasing, ApJ, 683, 123   DOI
104 im, J., & Park, C. 2006, A New Halo-Finding Method for N-Body Simulations, ApJ, 639, 600   DOI
105 Klypin, A., Kravtsov, A. V., Bullock, J. S., & Primack, J. R. 2001, Resolving the Structure of Cold Dark Matter Halos, ApJ, 554, 903
106 Komatsu, E., et al. 2011, Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, ApJS, 192, 18   DOI
107 Komatsu, E., et al. 2009, Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation, ApJS, 180, 330   DOI
108 Gao, L., & White, S. D. M. 2007, Assembly Bias in the Clustering of Dark Matter Haloes, MNRAS, 377, 5   DOI   ScienceOn
109 Gaztanaga, E., Cabre, A., & Hui, L. 2009, Clustering of Luminous Red Galaxies - IV. Baryon Acoustic Peak in the Line-of-Sight Direction and a Direct Measurement of H(z), MNRAS, 399, 1663   DOI   ScienceOn