• Title/Summary/Keyword: method of moment

Search Result 3,060, Processing Time 0.033 seconds

AN ERROR ESTIMATION FOR MOMENT CLOSURE APPROXIMATION OF CHEMICAL REACTION SYSTEMS

  • KIM, KYEONG-HUN;LEE, CHANG HYEONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.215-224
    • /
    • 2017
  • The moment closure method is an approximation method to compute the moments for stochastic models of chemical reaction systems. In this paper, we develop an analytic estimation of errors generated from the approximation of an infinite system of differential equations into a finite system truncated by the moment closure method. As an example, we apply the result to an essential bimolecular reaction system, the dimerization model.

Two Method for Evaluation of the Dipole Moment Matrix Elements (쌍극자모멘트 행렬요소를 계산하는 두가지 방법)

  • Sangwoon Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.229-238
    • /
    • 1978
  • Two methods for evaluation of the dipole moment matrix elements are developed, one using the expansion method for spherical harmonics and the other the transformation method of the dipole moment matrix elements into overlap integrals for Mulliken. The numerical values of the dipole moment matrix elements evaluated by two methods are in agreement with each other.

  • PDF

Random Analysis of Rolling Equation of Motion of Ships Based on Moment Equation Method (모멘트 방정식 방법에 의한 횡요 운동 방정식의 램덤 해석)

  • 배준홍;권순홍;하동대
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.41-45
    • /
    • 1992
  • In this paper an application technique of moment equation method to solution of nonlinear rolling equation of motion of ships is investigated. The exciting moment in the equation of rolling motion of ships is described as non-white noise. This non-white exciting moment is generated through use of a shaping filter. These coupled equations are used to generate moment equations. The nonstationary responses of the nonlinear system are obtained. The results are compared with those of a linear system.

  • PDF

Real-time Unbalance Moment Compensation Method for Line of Sight(LOS) Stabilization Control System (시선안정화 제어시스템의 실시간 불균형 모멘트 보상기법)

  • Jo, Sihun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.323-330
    • /
    • 2016
  • This paper describes real-time unbalance moment compensation method for line of sight(LOS) stabilization control systems. The factors of system inertia, frictions and unbalance moment affect the control accuracy of drive systems that are equipped to on the move(OTM) platforms requiring LOS stabilization function. In case of the unbalance moment among those factors is continuously changed as variation of relative angle between gravity vector and drive torque vector. Then, consideration of the effect in real-time is very complicate. Therefore, its effect should be designed to be minimized, however, designing it almost zero is impossible in real condition. In other words, it is hard to achieve target performance overcoming stability issue of highly unbalanced systems. To solve these problems, this paper proposes calculation method of unbalance moment by using measured sensor data for LOS stabilization control and its use for control compensation. Also, kinematical converting process and control structure for compensation are explained. The effectiveness of the proposed method as variation of unbalance moment is verified under simulation circumstance modeled by assuming LOS control system with 2-axis gimbal structure.

A Study for Robustness of Objective Function and Constraints in Robust Design Optimization

  • Lee Tae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1662-1669
    • /
    • 2006
  • Since randomness and uncertainties of design parameters are inherent, the robust design has gained an ever increasing importance in mechanical engineering. The robustness is assessed by the measure of performance variability around mean value, which is called as standard deviation. Hence, constraints in robust optimization problem can be approached as probability constraints in reliability based optimization. Then, the FOSM (first order second moment) method or the AFOSM (advanced first order second moment) method can be used to calculate the mean values and the standard deviations of functions describing constraints and object. Among two methods, AFOSM method has some advantage over FOSM method in evaluation of probability. Nevertheless, it is difficult to obtain the mean value and the standard deviation of objective function using AFOSM method, because it requires that the mean value of function is always positive. This paper presented a special technique to overcome this weakness of AFOSM method. The mean value and the standard deviation of objective function by the proposed method are reliable as shown in examples compared with results by FOSM method.

Image Retrieval Using the Fusion of Spatial Histogram and Wavelet Moments (공간 히스토그램과 웨이브릿 모멘트의 융합에 의한 영상검색)

  • 서상용;손재곤;김남철
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.11-14
    • /
    • 2000
  • We present an image retrieval method that improves retrieval rate by using the fusion of histogram and wavelet moment features. The key idea is that images similar to a query image are selected in DB by using the wavelet moment features. Then the result images are retrieved from the selected images by using histogram method. In order to evaluate the performance of the proposed method, we use Brodatz texture database, MPEG-7 T1 database and Corel Draw photo. Experimental result shows that the proposed method is better than each of histogram method and wavelet moment method.

  • PDF

Uncertainty Evaluation of a Multi-axis Force/Moment Sensor and Its Application (다축 힘/모멘트센서의 불확도평가 및 응용에 관한 연구)

  • 김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.177-180
    • /
    • 2001
  • This paper describes the calibration method and the evaluation method of relative expanded uncertainty for a multi-axis force/moment sensor. This sensor should be calibrated to be use in the industry. Now, the confidence of the calibration result is expressed with interference error. But it is no inaccurate, because an interference error, besides, a reproducibility error of the sensor, a error of this six-axis force/moment sensor calibrator, and so on. Thus, in order to accurately evaluate the relative expanded uncertainty of it, the concept of the uncertainty should be induced, and these errors must be contained in the relative expanded uncertainty. In this paper, the calibration method is exhibited and the evaluation method of the relative expanded uncertainty is also exhibited. And, a six-axis force/moment sensor was calibrated and the relative expanded uncertainty was evaluated.

  • PDF

Uncertainty Evaluation of a multi-axis Force/Moment Sensor

  • Kim, Gab-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.5-11
    • /
    • 2002
  • This paper describes the methods for calibration and evaluation of the relative expanded uncertainty of a multi-axis force/moment sensor. In order to use the sensor in the industry, it should be calibrated and its relative expanded uncertainty should be also evaluated. At present, the confidence of the sensor is shown with only interference error. However, it is not accurate, because the calibrated multi-axis force/moment sensor has an interference error as well as a reproducibility error of the sensor, etc. In this paper, the methods fur calibration and for evaluation of the relative expanded uncertainty of a multi-axis force/moment sensor are newly proposed. Also, a six-axis force/moment sensor is calibrated with the proposed calibration method and the relative expanded uncertainty is evaluated using the proposed uncertainty evaluation method and the calibration results. It is thought that the methods fur calibration and evaluation of the uncertainty can be usually used for calibration and evaluation of the uncertainty of the multi-axis force/moment sensor.

A Study on the Analysis of Stochastic Dynamic System (확률적 동적계의 해석에 관한 연구)

  • Nam, S.H.;Kim, H.R.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.127-134
    • /
    • 1995
  • The dynamic characteristics of a system can be critically influenced by system uncertainty, so the dynamic system must be analyzed stochastically in consideration of system uncertainty. This study presents a generalized stochastic model of dynamic system subjected to bot external and parametric nonstationary stochastic input. And this stochastic system is analyzed by a new stochastic process closure method and moment equation method. The first moment equation is numerically evaluated by Runge-Kutta method. But the second moment equation is founded to constitute an infinite coupled set of differential equations, so this equations are numerically evaluated by cumulant neglect closure method and Runge-Kutta method. Finally the accuracy of the present method is verified by Monte Carlo simulation.

  • PDF

Limiting the sway on multi-storey un-braced steel frames bending on weak axis with partial strength connections

  • Tahir, Mahmood Md.;Ngian, Poi Shek
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.825-847
    • /
    • 2011
  • This paper investigates the design using wind-moment method for semi-rigid un-braced steel frames bending on weak axis. A limiting sway method has been proposed to reduce the frame sway. Allowance for steel section optimization between moment of inertia on minor axis column and major axis beam was used in conjunction with slope-deflection analysis to derive equations for optimum design in the proposed method. A series of un-braced steel frames comprised of two, four, and six bays ranging in height of two and four storey were studied on minor axis framing. The frames were designed for minimum gravity load in conjunction with maximum wind load and vice-versa. The accuracy of the design equation was found to be in good agreement with linear elastic computer analysis up to second order analysis. The study concluded that the adoption of wind-moment method and the proposed limiting sway method for semi-rigid steel frame bending on weak axis should be restricted to low-rise frames not more than four storey.