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ABSTRACT. The moment closure method is an approximation method to compute the mo-
ments for stochastic models of chemical reaction systems. In this paper, we develop an analytic
estimation of errors generated from the approximation of aninfinite system of differential equa-
tions into a finite system truncated by the moment closure method. As an example, we apply
the result to an essential bimolecular reaction system, thedimerization model.

1. INTRODUCTION

When a chemical reaction system has small number of molecular species, researchers often
use the stochastic models to capture intrinsic fluctuations[1, 2, 3]. The governing equation
for the stochastic model withs species andn reactions is described by the chemical master
equation in the form of

∂

∂t
p(x, t) =

n∑

k=1

[rk(x− Vk)p(x− Vk, t)− rk(x)p(x, t)], (1.1)

wherep(x, t) is the probability that there arex = (x1, . . . , xs) molecules in the given system
at timet, eachrk, i = 1, ..., n, is the propensity which is the probability of an occurrenceof
thek-th reaction per unit time, andVk is thek-th column vector of the stoichiometric matrixV
[4]. Moreover, one can write the equation (1.1) as a form of the linear system

dp(t)
dt

= Ap(t), (1.2)

whereA is the matrix of transition probability rates between the states andp is the vector of
probabilities of the states [5].
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Finding the exact solution of (1.1) or (1.2) is mostly difficult or impossible, since the sto-
chastic models of most reaction systems have a large or infinite number of the states except for
relatively simple systems [5]. Alternatively, Monte Carlotype algorithms such as Gillespie’s
stochastic simulation algorithm are used for finding the numerical solutions [3, 6]. However,
if there are fast reactions or a certain number of molecules in the system, computations by
the stochastic simulation algorithm are very inefficient and for this case, one has to rely on
approximation methods to replace the SSA such as tau-leaping method, probability generating
function method, reduction method on slow time scale, and moment closure approximation
[7, 8, 9, 10, 11, 12, 13]. Especially, the moment closure approximation is used when the sta-
tistical quantities such as moments (e.g. mean and variance) are sought [14, 15, 16, 17]. A
difficulty in using the moment closure approximation is thatthe system of the ordinary dif-
ferential equations of all moments is infinite dimensional if there are one or more nonlinear
reactions in a reaction system, which is very common in real chemical systems. In [13], a
moment closure approximation by truncation of the infinite system into a finite system has
been introduced and the authors proved a formal error estimation for numerical consistency.
However, since the solution of the infinite dimensional system is mostly unknown, a rigorous
analytic estimation of the error generated by the truncation has not been reported yet, to the
best of the authors’ knowledge.

In this paper, we present a rigorous analytic error estimation generated by an approximation
of infinite dimensional system into a finite dimensional system and apply it to a fundamental
and important nonlinear chemical system, the dimerizationmodel.

The outline of the paper is as follows. In Section 2, we develop an analytic estimation of
the error generated from an approximation of an infinite dimensional system into a finite di-
mensional system. In Section 3, we apply the result of the error estimation to the stochastic
dimerization reaction system and illustrate numerical results. Throughout this paper, we con-
sider stochastically modeled chemical reaction systems with bounded state space (e.g. closed
reaction system), to guarantee that all moments are bounded.

2. ERROR ESTIMATION

We first consider a certain class of infinite ordinary differential equations arising from mo-
ment equations of stochastic reaction systems including the dimerization as follows; let us first
denote the quadratic functions

fkj(x1) = αkj,1(x1)
2 + αkj,2x1 + αkj,3

for k = 1, 2, · · · andj = 1, · · · , k. We define the infinite dimensional system (S) (heref1 =
f11 for convenience for notation) as

ẋ1 = f1(x1) + β1x2

ẋ2 = f21(x1) + f22(x1)x2 + β2x3

· · · · · ·

ẋn = fn1(x1) + fn2(x1)x2 + fn3(x1)x3 + · · ·+ fnn(x1)xn + βnxn+1
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· · · · · · ,

whereẋ denotes the derivative ofx with respect tot. Note thatx1(t) andxk(t), k ≥ 2, will
denote the meanµ(t) and thek-th central momentE[(X(t) − µ(t))k] of X(t), respectively,
whereX(t) is the random variable that denotes the number of molecule ofa species in a
chemical reaction system at timet.

Moreover, we consider the truncated closed system (Sn) obtained by dropping the term
βnxn+1 from the system (S):

ẏ1 = f1(y1) + β1y2

ẏ2 = f21(y1) + f22(y1)y2 + β2y3

· · · · · ·

ẏn = fn1(y1) + fn2(y1)y2 + fn3(y1)y3 + · · ·+ fnn(y1)yn.

Sincexk denotes thek-th moment in a bounded system, we can assume that there existcon-
stantsA1 ≤ A2 ≤ A3 ≤ · · · such that|xk(t)| ≤ Ak andAk ≥ 1. Forj ≤ k, we denote

mkj = max
|t|≤A1

|fkj(t)|, mk = max
j≤k

mkj. (2.1)

LetLkj denote the Lipschitz constant offkj on [−A1, A1], so that

|fkj(t)− fkj(s)| ≤ Lkj|t− s|, ∀t, s ∈ [−A1, A1], j ≤ k. (2.2)

Let us denoteLk = maxj≤k Lkj anda(n) = max
1≤j≤k≤n

max
ℓ=1,2,3

{|αkj,ℓ|}. Then, as easy to check,

one can chooseLk andmk such that

Lk ≤ 3a(k)A1, mk ≤ 3a(k)A2
1. (2.3)

Now we will use the following version of Gronwall’s inequality.

Lemma 1. Leth(t) be a continuous real-valued function such that

|h(t)| ≤M

∫ t

0
|h(s)|ds + C.

Then
|h(t)| ≤ CeMt.

Before we proceed further, we explain why one cannot apply Gronwall’s inequality directly
for h(t) := |(x1, · · · , xn)−(y1, · · · , yn)|: Typically forh(t), unlessLk andmk are very small,
one has

h(t) ≤Mn

∫ t

0
h(s)ds + Cn

with some constantsCn andMn with the property thatCn,Mn →∞ asn→∞. In this case,
Lemma 1 only leads to

h(t) ≤ Cne
Mnt →∞ as n→∞.
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Thus, the approximation by the truncated system does not work well in general. To avoid this
problem, we construct an alternative system for

x̄k(t) :=
xk(t)

g(k)
,

where{g(k)|k = 1, 2, · · · } is an increasing sequence such thatg(1) = 1: We first note that
∀k, j,

|x̄k| ≤
Ak

g(k)
,

xk
g(j)

=
g(k)

g(j)
x̄k.

Using this relation and dividing the equation forxk in system (S) by g(k), one obtains the
system (̄Sn) for X̄n := (x̄1, · · · , x̄n) :

˙̄x1 =
g(1)

g(1)
f1(x̄1) + β1

g(2)

g(1)
x̄2

˙̄x2 =
g(1)

g(2)
f21(x̄1) +

g(2)

g(2)
f22(x̄1)x̄2 + β2

g(3)

g(2)
x̄3

· · · · · ·

˙̄xn =
g(1)

g(n)
fn1(x̄1) +

g(2)

g(n)
fn2(x̄1)x̄2 · · ·+

g(n)

g(n)
fnn(x̄1)x̄n + βn

1

g(n)
xn+1.

Next we introduce a closed system which is basically almost same as the above system (S̄n)
except the last termβnxn+1/g(n). Since we do not know a prior if the solution to closed
system has a similar upper bound asX̄n or not, we do some minor adjustments as follows: We
define

hk(t) =





Ak

g(k) : t ≥ Ak

g(k)

t : t ∈ [− Ak

g(k) ,
Ak

g(k) ]

− Ak

g(k) : t ≤ − Ak

g(k) .

Then, obviouslȳxk = hk(x̄k), and for allt, s ∈ R (not only fort, s ∈ [−A1, A1]),

|hk(t)| ≤
Ak

g(k)
, |hk(t)−hk(s)| ≤ |t−s|, |fkj(h1(t))−fkj(h1(s))| ≤ Lk|t−s|, (j ≤ k)

(2.4)
and

g(k)

g(j)
hk(t) ≤

g(k)

g(j)

Ak

g(k)
≤

Ak

g(j)
, ∀k, j.

Replacingx̄k by hk(x̄k) in the system (̄Sn), we consider the closed system (Ŝn):

˙̄y1 =
g(1)

g(1)
f1(h1(ȳ1)) + β1

g(2)

g(1)
h2(ȳ2) =: F1(Ȳn),

˙̄yk =
g(1)

g(k)
fk1(h1(ȳ1)) +




k∑

j=2

g(j)

g(k)
fkj(h1(ȳ1))hj(ȳj)


+ βk

g(k + 1)

g(k)
hk+1(ȳk+1)
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=: Fk(Ȳn), for (2 ≤ k ≤ n− 1),

˙̄yn =
g(1)

g(n)
fn1(h1(ȳ1)) +

n∑

j=2

g(j)

g(n)
fnj(h1(ȳ1))hj(ȳj) =: Fn(Ȳn).

By (2.1), (2.2), (2.4) and the inequality

|f(t)g(t)− f(s)g(s)| ≤ sup
t
|f | · |g(t)− g(s)|+ sup

t
|g| · |f(t)− f(s)|,

we have
|F1(t1, t2)− F1(s1, s2)| ≤ L1|t1 − s1|+ β1g(2)|t2 − s2|,

and similarly for2 ≤ k ≤ n− 1 andT = (t1, · · · , tn) andS = (s1, · · · , sn),

|Fk(T)− Fk(S)| ≤
g(1)

g(k)
Lk1|t1 − s1|+

k∑

j=2

(
g(j)

g(k)
Lkj

Aj

g(j)
|t1 − s1|+

g(j)

g(k)
mkj|tj − sj|

)

+|βk|
g(k + 1)

g(k)
|tk+1 − sk+1|

≤
1

g(k)

k∑

j=1

LkjAj |t1 − s1|+
1

g(k)

k∑

j=2

mkjg(j)|tj − sj|

+|βk|
g(k + 1)

g(k)
|tk+1 − sk+1|.

Moreover, fork = n, we have

|Fn(T)− Fn(S)| ≤
1

g(n)

n∑

j=1

LnjAj|t1 − s1|+
1

g(n)

n∑

j=2

mnjg(j)|tj − sj|.

Thus, we have forFn = (F1, · · · , Fn),

|Fn(T)−Fn(S)| ≤ Nn,1|t1 − s1|+Nn,2|t2 − s2|+ · · · +Nn,n|tn − sn|,

where

Nn,1 :=

n∑

k=1

1

g(k)

k∑

j=1

LkjAj ,

and for2 ≤ k ≤ n,

Nn,k := |βk−1|
g(k)

g(k − 1)
+ g(k)

n∑

ℓ=k

1

g(ℓ)
mℓk.

If we define
Mn := sup

1≤k≤n
Nn,k, (2.5)

then it follows that
|Fn(T)− Fn(S)| ≤Mn|T− S|, ∀T,S.



220 K.-H. KIM AND C. H. LEE

Now let Ȳn = (ȳ1, · · · , ȳn). Then, sinceX̄n− Ȳn = 0 whent = 0, we have forZn = X̄n− Ȳn,

|Zn(t)| = |

∫ t

0
Fn(X̄n)− Fn(Ȳn)ds+

∫ t

0
βnxn+1(s)(g(n))

−1ds|

≤ Mn

∫ t

0
|Zn(s)|ds + |βn|T

An+1

g(n)
.

Thus by Gronwall’s inequality,

|X̄n(t)− Ȳn(t)| ≤ T |βn|
An+1

g(n)
eMnt =: En(t), ∀ t ≤ T.

Up to now, we have proved the following result:

Theorem 2. Let (x1, x2, · · · ) be a solution to the infinite system (S) and assume there exists
an increasing sequence of constantsAn, n = 1, 2, . . . such that|xn(t)| ≤ An. Also we let
{g(n) : n ≥ 1} be an increasing sequence satisfyingg(1) = 1 and let Ȳn = (ȳ1, · · · , ȳn)

be the solution of the closed system (Ŝn). Then forX̄n = (x1, x2g
−1(2), · · · , xng

−1(n)), we
have

|X̄n(t)− Ȳn(t)| ≤ T |βn|
An+1

g(n)
eMnt, ∀t ≤ T, (2.6)

whereMn is the constant defined in (2.5).

Remark 3. If we assume there are constantsN,K1,K2 > 0 such that

Ak ≤ Nk, a(n) ≤ K1n, |β(n)| ≤ K2n,

then, takingg(n) = en−1Nn−1 and using (2.3) and (2.6), one can show

En(t) ≤ Ce−n[1−t(3eNK2+3eN2K1)],

whereC is a constant depending onT . Hence the approximation error goes exponentially fast
asn→∞ if t < (3eNK2 + 3eN2K1)

−1.

3. APPLICATION: DIMERIZATION

We consider the stochastic dimerization model

A1 +A2

k1−→
←−
k2

A3.

LetXi(t), i = 1, 2, 3 denote the number of molecules of speciesAi at timet and letki, i = 1, 2
denote the reaction probability constant. Using conservation relationsX1(t) +X3(t) = A and
X2(t) +X3(t) = B for some constantA,B > 0, one obtains the equations forE[X1(t)] :=
µ(t) andmth central momentMm := E[(X1 − µ)m] for m ≥ 2,

dµ

dt
= (−1)

(
k1µ(B −A+ µ) + k1M2

)
+ k2(A− µ) (3.1)
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dMm

dt
= k1µ(B −A+ µ)

(m−1∑

k=0

(
m

k

)
(−1)m−kMk

)

+k1(B −A+ 2µ)
(m−1∑

k=0

(
m

k

)
(−1)m−kMk+1

)

+k1
(m−1∑

k=0

(
m

k

)
(−1)m−kMk+2

)
+ k2(A− µ)

(m−1∑

k=0

(
m

k

)
Mk

)

−k2
(m−1∑

k=0

(
m

k

)
Mk+1

)
−mµ′Mm−1,

whereM0(t) = E[1] = 1 andM1(t) = E[X1 − µ] = 0 for all t ≥ 0 [13].
Let us denoteµ(t) andMk(t) by x1(t) andxk(t) for k ≥ 2 in the system (3.1). Then one

sees that the system (3.1) is of the form of the infinite system(S), and its truncated system
by the moment closure is of the form of the system (Sn) if the highest-order moment term
−k1mMm+1 is dropped off by the moment closure method [13]. Let us assume thatk1 =
1, k2 = 1 andA = 10, B = 5. Then, for example, we can obtain the following ODE system
for xk(t), 1 ≤ k ≤ 10 from the10-th order moment closure approximation of (3.1);

ẋ1 =
(
10 + 4x1 − (x1)

2
)
− x2

ẋ2 =
(
10− 6x1 + (x1)

2
)
+

(
9− 4x1

)
x2 − 2x3

ẋ3 =
(
10 + 4x1 − (x1)

2
)
+

(
11 + 18x1 − 3(x1)

2
)
x2 +

(
15 − 6x1

)
x3 − 3x4

ẋ4 =
(
10− 6x1 + (x1)

2
)
+

(
77− 44x1 + 6(x1)

2
)
x2 +

(
28x1 − 4(x1)

2
)
x3

+
(
22− 8x1

)
x4 − 4x5

ẋ5 =
(
10 + 4x1 − (x1)

2
)
+

(
69 + 50x1 − 10(x1)

2
)
x2 +

(
145− 80x1 + 10(x1)

2
)
x3

+
(
20 + 40x1 − 5(x1)

2
)
x4 +

(
30− 10x1

)
x5 − 5x6

ẋ6 =
(
10− 6x1 + (x1)

2
)
+

(
175− 102x1 + 15(x1)

2
)
x2 +

(
104 + 110x1 − 20(x1)

2
)
x3

+
(
245− 130x1 + 15(x1)

2
)
x4 +

(
− 50 + 54x1 − 6(x1)

2
)
x5 +

(
39− 12x1

)
x6 − 6x7

ẋ7 =
(
10 + 4x1 − (x1)

2
)
+

(
167 + 98x1 − 21(x1)

2
)
x2 +

(
441 − 252x1 + 35(x1)

2
)
x3

+
(
119 + 210x1 − 35(x1)

2
)
x4 +

(
385 − 196x1 + 21(x1)

2
)
x5

+
(
− 91 + 70x1 − 7(x1)

2
)
x6 +

(
49− 14x1

)
x7 − 7x8
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ẋ8 =
(
10− 6x1 + (x1)

2
)
+

(
313− 184x1 + 28(x1)

2
)
x2 +

(
384 + 280x1 − 56(x1)

2
)
x3

+
(
952− 532x1 + 70(x1)

2
)
x4 +

(
84 + 364x1 − 56(x1)

2
)
x5

+
(
574− 280x1 + 28(x1)

2
)
x6 +

(
− 144 + 88x1 − 8(x1)

2
)
x7 +

(
60− 16x1

)
x8 − 8x9

ẋ9 =
(
10 + 4x1 − (x1)

2
)
+

(
305 + 162x1 − 36(x1)

2
)
x2 +

(
993− 576x1 + 84(x1)

2
)
x3

+
(
720 + 672x1 − 126(x1)

2
)
x4 +

(
1848 − 1008x1 + 126(x1)

2
)
x5

+
(
− 42 + 588x1 − 84(x1)

2
)
x6 +

(
822 − 384x1 + 36(x1)

2
)
x7

+
(
− 210 + 108x1 − 9(x1)

2
)
x8 +

(
72− 18x1

)
x9 − 9x10

ẋ10 =
(
10− 6x1 + (x1)

2
)
+

(
491− 290x1 + 45(x1)

2
)
x2 +

(
920 + 570x1 − 120(x1)

2
)
x3

+
(
2625 − 1500x1 + 210(x1)

2
)
x4 +

(
1140 + 1428x1 − 252(x1)

2
)
x5

+
(
3318 − 1764x1 + 210(x1)

2
)
x6 +

(
− 312 + 900x1 − 120(x1)

2
)
x7

+
(
1140 − 510x1 + 45(x1)

2
)
x8 +

(
− 290 + 130x1 − 10(x1)

2
)
x9

+
(
85− 20x1

)
x10 − 10x11

SinceX1 ≤ 10, one can show that

|x1| ≤ 10 := A1, |xk| ≤ 20k =: Ak

for k ≥ 2 by Minkowski inequality and|βk| = k. If we takeg(k) = 20k−1ek−1, then one can
checkMn = 20e(n − 1) for n = 2, 3, · · · , 10. Now let x̄k(t) := xk(t)g

−1(k) and letȳk(t)
(k = 1, 2, · · · , 10) denote the solution of the closed systemŜn. Then, by (2.6), for anyt < 1
andn = 2, 3, · · · , we obtain

|X̄n(t)− Ȳn(t)| ≤ n202e−(n−1)(1−20et).

Thus,En(t) = |X̄n(t)− Ȳn(t)| gets smaller asn grows for anyt < 1/(20e) ≈ 0.0184.
Figure 1 illustrates the errors inlog10 between approximate means and variances computed

by Euler method in time interval[0, 0.02]. Here the errors are very small and so we use the
errors inlog10 to illustrate the error graphs clearly. Moreover, in Table 1, we compareL2 error
between approximate mean and variance in the time interval[0, 0.02]. In Figure 1 and Table 1,
one can see that the errors become smaller and converge to zero as the order of approximation
is increased, which is a consequence of Theorem 2.
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(a) (b)

FIGURE 1. Comparison of errors inlog10 between approximate solutions ob-
tained by using Euler method with time steph = 2 × 10−5 in [0, 0.02]. (a)
Eij = log10( |mean byi-th order moment approximation - mean byj-th order
moment approximation|). (b) Eij = log10( | variance byi-th order moment
approximation - variance byj-th order moment approximation|).

TABLE 1. L2 errors in time interval[0, 0.02]. LEij = L2 error between
solutions ofi-th order andj-th order moment approximation. TheL2 error
betweenx(t) andy(t) is defined by

√∑
t(x(t)− y(t))2

L2 Error Mean Variance

LE12 0.1031 N/A
LE23 0.0014 0.2666
LE34 2.7301e-05 0.0066
LE45 5.8851e-07 1.7597e-04
LE56 0 0
LE67 0 0

4. CONCLUSION

In this paper, we presented the approximation of the solution of an infinite dimensional
ODE system motivated from moment equations of stochastic reaction systems. We obtained
a rigorous analytic estimation of the error between the solutions of the infinite system and the
truncated finite system (Theorem 2). As an example, we applied it to the stochastic dimeriza-
tion model and illustrated the numerical results.
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This work is a first report for an analytic estimation of the error generated by the moment
closure approximation, and the result presented in this paper has a limitation in that it can be
applied to a certain class of the chemical reaction systems with the type of moment equations
similar to the system (S). As a future work, we plan to extend the result to general stochastic
chemical reaction systems with multi-dimensional variables.

ACKNOWLEDGEMENTS

This research was supported by Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of Education
(2017R1D1A1B03033255 (K.-H. Kim), 2016R1D1A1B03934427 (C. H. Lee)).

REFERENCES

[1] C. V. Rao, D. M. Wolf and A. P. Arkin,Control, exploitation and tolerance of intracellular noise, Nature,
420(6912) (2002), 231.

[2] M. Thattai and A. Van Oudenaarden,Intrinsic noise in gene regulatory networks, Proceedings of the National
Academy of Sciences,98(15) (2001), 8614–8619.

[3] D. J. Higham,Modeling and simulating chemical reactions, SIAM review,50(2) (2008), 347–368.
[4] D. T. Gillespie,A rigorous derivation of the chemical master equation, Physica A: Statistical Mechanics and

its Applications,188 (1992), 404–425.
[5] C. H. Lee and P. Kim,An analytical approach to solutions of master equations forstochastic nonlinear

reactions, Journal of Mathematical Chemistry,50(6) (2012), 1550–1569.
[6] D. T. Gillespie,Exact stochastic simulation of coupled chemical reactions, The Journal of Physical Chemistry,

81(25) (1977), 2340–2361.
[7] D. T. Gillespie,Approximate accelerated stochastic simulation of chemically reacting systems, The Journal of

Chemical Physics,115(4) (2001), 1716–1733.
[8] P. Kim and C. H. Lee,A probability generating function method for stochastic reaction networks, The Journal

of Chemical Physics,136(23) (2012), 234108.
[9] P. Kim and C. H. Lee,Fast probability generating function method for stochastic chemical reaction networks,

MATCH Communications in Mathematical and in Computer Chemistry,71 (2014), 57 – 69.
[10] Y. Cao, D. T. Gillespie, and L. R. Petzold,The slow-scale stochastic simulation algorithm, The Journal of

Chemical Physics,122 (2005), 014116.
[11] B. Munsky and M. Khammash,The finite state projection algorithm for the solution of thechemical master

equation, The Journal of Chemical Physics,124 (2006), 044104.
[12] C. H. Lee and R. Lui,A reduction method for multiple time scale stochastic reaction networks with non-unique

equilibrium probability, Journal of Mathematical Chemistry,47(2) (2010), 750–770.
[13] C. H. Lee, K-H. Kim and P. Kim,A moment closure method for stochastic reaction networks, The Journal of

Chemical Physics,130(13) (2009), 134107.
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