• Title/Summary/Keyword: method: numerical simulations

Search Result 1,420, Processing Time 0.04 seconds

Particle-based Numerical Modeling of Linear Viscoelastic Materials using MPM based on FEM for Taylor Impact Simulations

  • Kim, See Jo
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.207-212
    • /
    • 2018
  • Taylor rod impact tests have been the subject of many theoretical and experimental investigations. This paper discusses the numerical methods for simulating the Taylor impact test, which is widely used to obtain constitutive equations and failure conditions under high-velocity collisions of materials. With this in mind, a particle-based MPM (material point method) for linear viscoelastic solid materials was implemented, and MPM simulations for viscoelastic deformation behavior were numerically verified and confirmed by comparing the MPM and FEM results. In addition, this modeling and numerical approach could be extended to more complex viscoelastic models for basic understanding and to analyze the deformation and fracture behavior of more complicated viscoelastic material systems.

A Review on the Numerical Simulations of Crack Propagation and Meshless Methods (균열전파 수치시뮬레이션과 무요소법의 연구동향)

  • Nam, Yong-Yun;Park, Seong-Hwan
    • 연구논문집
    • /
    • s.29
    • /
    • pp.69-82
    • /
    • 1999
  • Numerical techniques for the simulations of crack propagation are reviewed. This paper highlights the meshless methods as a potential method for the simulations. thus they are reviewed deeply. Especially the theoretical aspects of meshless methods are discussed. and it is shown that all meshless methods are based on the PUM and unified in GFEM even though they are originated from different sources.

  • PDF

On-the-fly ionizing photon non-conservation correction for the Excursion-set reionization models

  • Park, Jaehong;Greig, Bradley;Mesinger, Andrei
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.30.3-30.3
    • /
    • 2021
  • In order to generate the 3D structure of the 21-cm signal during the reionization, semi-numerical simulations based on Excursion set formalism are broadly used. However, semi-numerical simulations in the realization of the 3D structure are known to be the ionizing photon non-conserving by the structure of the Excursion set approach. Recently, explicit photon conserving algorithms for semi-numerical simulations introduced, but they are still too slow when forward modelling the 21-cm signal with high-dimensional parameter spaces. Here, we introduce a new method for approximately correcting photon non-conservation, which can be applied on-the-fly. This method is tailored towards the efficient simulation and Bayesian inference with high-dimensional parameter space. Then, we investigate how large an impact that photon non-conservation has on astrophysical parameter inference by performing an MCMC analysis. We find that the ionizing escape parameter is deviated from the fiducial value by 2 sigma when we infer astrophysical parameters without this correction.

  • PDF

Characteristics of Conductive Adhesives Using Low-Melting-Point Alloy Fillers (저융점 합금 필러를 이용한 도전성 접착제의 유동해석)

  • Lee, Jin-Un;Lee, Seong-Hyeok;Kim, Jong-Min
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.232-234
    • /
    • 2007
  • This study conducts numerical simulations of Isotropic conductive adhesives using low melting point alloy fillers during the reflow process. The CIP method and predictor-corrector method are used to simulate more accurately on free surface flow of low melting point alloy fillers. For finding out optical conditions to obtain reliable conduction paths, the present study conducts extensive numerical simulations.

  • PDF

NUMERICAL SIMULATIONS OF TWO DIMENSIONAL INCOMPRESSIBLE FLOWS USING ARTIFICIAL COMPRESSIBILITY METHOD (가상 압축성 기법을 이용한 이차원 비압축성 유동의 수치모사)

  • Lee, H.R.;Yoo, I.Y.;Kwak, E.K.;Lee, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.389-396
    • /
    • 2010
  • In this paper, a new computational code was developed using Chorin's artificial compressibility method to solve the two-dimensional incompressible Navier-Stokes equations. In spatial derivatives, Roe's flux difference splitting was used for the inviscid flux, while central differencing was used for the viscous flux. Furthermore, AF-ADI with dual time stepping method was implemented for accurate unsteady computations. Two-equation turbulence models, Menter's $k-{\omega}$ SST model and Coakley's $q-{\omega}$ model, hae been adopted to solve high-Reynolds number flows. A number of numerical simulations were carried out for steady laminar and turbulent flow problems as well as unsteady flow problem. The code was verified and validated by comparing the results with other computational results and experimental results. The results of numerical simulations showed that the present developed code with the artificial compressibility method can be applied to slve steady and unsteady incompressible flows.

  • PDF

Dynamic ice force estimation on a conical structure by discrete element method

  • Jang, HaKun;Kim, MooHyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.136-146
    • /
    • 2021
  • This paper aims to numerically estimate the dynamic ice load on a conical structure. The Discrete Element Method (DEM) is employed to model the level ice as the assembly of numerous spherical particles. To mimic the realistic fracture mechanism of ice, the parallel bonding method is introduced. Cases with four different ice drifting velocities are considered in time domain. For validation, the statistics of time-varying ice forces and their frequencies obtained by numerical simulations are extensively compared against the physical model-test results. Ice properties are directly adopted from the targeted experimental test set up. The additional parameters for DEM simulations are systematically determined by a numerical three-point bending test. The findings reveal that the numerical simulation estimates the dynamic ice force in a reasonably acceptable range and its results agree well with experimental data.

Fuzzy Reasoning on Computational Fluid Dynamics - Feasibility of Fuzzy Control for Iterative Method - (CFD에로의 Fuzzy 추론 응용에 관한 연구 - 반복계산을 위한 퍼지제어의 유효성 -)

  • Lee, Y.W.;Jeong, Y.O.;Park, W.C.;Lee, D.H.;Bae, D.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.21-26
    • /
    • 1998
  • Numerical simulations for various fluid flows require enormous computing time during iterations. In order to solve this problem, several techniques have been proposed. A SOR method is one of the effective methods for solving elliptic equations. However, it is very difficult to find the optimum relaxation factor, the value of this factor for practical problems used to be estimated on the basis of expertise. In this paper, the implication of the relaxation factor are translated into fuzzy control rules on the basis of the expertise of numerical analysers, and fuzzy controller incorporated into a numerical algorithm. From two cases of study, Poisson equation and cavity flow problem, we confirmed the possibility of computational acceleration with fuzzy logic and qualitative reasoning in numerical simulations. Numerical experiments with the fuzzy controller resulted in generating a good performance.

  • PDF

A Study of Numerical Wave Tank for 3-Dimensional Free Surface Wave Simulation (3차원 자유표면파 모사를 위한 수치 파수조에 관한 연구)

  • Ha, Y.R.;Kim, Y.J.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.27-34
    • /
    • 2011
  • The increasing capabilities of the computers enable us to utilize various numerical schemes for the time-domain simulations concerned with 3-dimensional free-surface wave problems. There are still difficulties to solve such kind of problems, however. That's because long time simulations with large computational domain are needed in time-domain analysis. So, we need faster and more efficient numerical schemes to get the solutions practically for these problems. In this paper, a high-order spectral/boundary-element method is used for the numerical investigation of physics involved in wave-body interaction. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time-domain. To get the robust study in these topics, various numerical tests are performed and compared with others' works.

Numerical Simulation of Two-dimensional Nonlinear Waves on Beaches Using a Smoothed Particle Hydrodynamics Method (SPH법을 이용한 해안에서의 2차원 비선형파 수치시뮬레이션)

  • Kim, Cheol-Ho;Lee, Young-Gill;Jeong, Kwang-Leol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.525-532
    • /
    • 2010
  • In this paper, wave breakers which occur in two dimensional coasts are simulated using a SPH(Smoothed Particle Hydrodynamics) method which represents the movement of fluidic physical volume with particles. As continuative fluid is approximated to the particles, the simulations are performed using fully Lagrangian method without any grid system. Two-dimensional Navier-Stokes equations and continuity equation are used for the numerical simulations. To generate incident waves, a piston type wavemaker is employed. The accuracy of the wave which is numerically generated by the wavemaker is verified by comparing with analytical results. The computations are carried out with various wave heights and slopes. The wave patterns generated through the numerical simulations are compared with several existing experimental and computational results. Agreement between the experimental data and the computation results is comparatively good. Also, the breaker depth index and the breaker height index from the present calculations are compared with the existing experimental results, and the tendency is very similar.

Higher-order Spectral Method for Regular and Irregular Wave Simulations

  • Oh, Seunghoon;Jung, Jae-Hwan;Cho, Seok-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.406-418
    • /
    • 2020
  • In this study, a nonlinear wave simulation code is developed using a higher-order spectral (HOS) method. The HOS method is very efficient because it can determine the solution of the boundary value problem using fast Fourier transform (FFT) without matrix operation. Based on the HOS order, the vertical velocity of the free surface boundary was estimated and applied to the nonlinear free surface boundary condition. Time integration was carried out using the fourth order Runge-Kutta method, which is known to be stable for nonlinear free-surface problems. Numerical stability against the aliasing effect was guaranteed by using the zero-padding method. In addition to simulating the initial wave field distribution, a nonlinear adjusted region for wave generation and a damping region for wave absorption were introduced for wave generation simulation. To validate the developed simulation code, the adjusted simulation was carried out and its results were compared to the eighth order Stokes theory. Long-time simulations were carried out on the irregular wave field distribution, and nonlinear wave propagation characteristics were observed from the results of the simulations. Nonlinear adjusted and damping regions were introduced to implement a numerical wave tank that successfully generated nonlinear regular waves. According to the variation in the mean wave steepness, irregular wave simulations were carried out in the numerical wave tank. The simulation results indicated an increase in the nonlinear interaction between the wave components, which was numerically verified as the mean wave steepness. The results of this study demonstrate that the HOS method is an accurate and efficient method for predicting the nonlinear interaction between waves, which increases with wave steepness.