• Title/Summary/Keyword: methane emissions

Search Result 272, Processing Time 0.027 seconds

Comparison and Optimization of Flux Chamber Methods of Methane Emissions from Landfill Surface Area (매립지 표면의 메탄 발산량 실측을 위한 플럭스 챔버의 방법론적 비교와 최적화)

  • Jeong, Jin Hee;Kang, Su Ji;Lim, Jong Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.535-542
    • /
    • 2016
  • As one of the most cost-effective methods for surface emission measurements, flux chamber method has been used worldwide. It can be classified into two types: SFC (with slope method) and DFC (with steady-state method). SFC (static flux chamber) type needs only simple equipment and is easy to handle. However, the value of flux might vary with SFC method, because it assumes that the change of concentration in chamber is linear with time. Although more specific equipments are required for DFC (dynamic flux chamber) method, it can lead to a constant result without any ambiguity. We made a self-designed DFC using a small and compact kit, which recorded good sample homogeneity (RSD < 5%) and recovery ( > 90%). Relative expanded measurement uncertainty of this improved DFC method was 7.37%, which mainly came from uncontrolled sweep air. The study shows that the improved DFC method can be used to collect highly reliable emission data from large landfill area.

Carbon Capture and CO2/CH4 Separation Technique Using Porous Carbon Materials (다공성 탄소재료를 이용한 CO2 포집 및 CO2/CH4 분리 기술)

  • Cho, Se Ho;Bai, Byong Chol;Yu, Hye-Ryeon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.343-347
    • /
    • 2011
  • Due to the strong dependence on fossil fuels within the history of human progress, it leads to disaster of the whole world like flood, shortage of water and extinction of the species. In order to curb carbon dioxide emissions, many technologies are being developed. Among them, porous carbon materials have important advantages over other absorbent, such as high surface area, thermal and chemical resistance, low cost, various pore distribution and low energy requirement for their regeneration. Carbon capture and storage (CCS) has attracted the significant research efforts for reducing green house gas emission using several absorbent and process. Moreover, the absorbent are used for the separation of bio mass gas that contains methane which is considered a promising fuel as new green energy resource. In this review, we summarized the recent studies and trend about the porous carbon materials for CCS as well as separation from the biogas.

Rumen fermentation, methane production, and microbial composition following in vitro evaluation of red ginseng byproduct as a protein source

  • Hamid, Muhammad Mahboob Ali;Moon, Joonbeom;Yoo, Daekyum;Kim, Hanbeen;Lee, Yoo Kyung;Song, Jaeyong;Seo, Jakyeom
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.801-811
    • /
    • 2020
  • The main objective of this in vitro study was to evaluate red ginseng byproduct (RGP) as a protein resource and its effects on rumen fermentation characteristics, microflora, CO2, and CH4 production in ruminants. Four treatments for in vitro fermentation using buffered rumen fluid over a 48 h incubation period were used: 1, RGP; 2, corn gluten feed (CGF); 3, wheat gluten (WG); and 4, corn germ meal. In vitro dry matter digestibility (IVDMD), in vitro neutral detergent fiber digestibility (IVNDFD), in vitro crude protein digestibility (IVCPD), volatile fatty acids, pH, and ammonia nitrogen (NH3-N) were estimated after 48 h incubation. Gas production was investigated after 3, 6, 12, 24, 36 and 48 h. The CO2 and CH4 were evaluated after 12, 24, 36, and 48 h. A significant difference in total gas production and CO2 emissions was observed (p < 0.01) at all incubation times. CH4 production in RGP were higher (p < 0.05) than that in other treatments but a higher CH4 portion in the total gas production was observed in WG (p < 0.05) at 48 h incubation. The IVDMD, IVNDFD, and IVCPD of RGP was lower than those of other conventional ingredients (p < 0.01). The RGP had the lowest NH3-N value among the treatments (p < 0.01). The RGP also had the lowest total VFA concentration (p < 0.01), but presented the highest acetate proportion and acetate to propionate ratio among the treatments (both, p < 0.01). The abundance of Prevotella ruminicola was higher in RGP than in WG (p < 0.01), whereas RGP has lower methanogenic archaea (p < 0.01). In conclusion, based on the nutritive value, IVDMD, low NH3-N, and decreased methanogenic archaea, RGP inclusion as a protein source in ruminant diets can be an option in replacing conventional feed sources.

The emission of VOCs as landfill gas (LFG) from an urban landfill site (도심지역 매립장의 VOC 성분 조성과 배출 특성에 대한 연구)

  • Kim, Ki-Hyun;Choi, Gyoo-Hoon;Oh, Sang-In;Choi, Ye-Jin;Sun, Wooyoung;Jeon, Ui-Chan;Ju, Do Weon
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.407-417
    • /
    • 2003
  • In this study, we measured the concentration of VOCs in ambient air and landfill gas (LFG) in a midsize municipal landfill site. The LFG flux values of VOCs were computed using a total of fifteen VOCs determined by GC-PID system. To understand relative contribution of these 15 VOCs to the total carbon budget, their concentration and flux estimates were compared to those of non-methane hydrocarbons (NMHC) measured concurrently. It was also found that there were systematic differences in absolute VOC concentration levels between LFG and air samples above landfill surface. The VOC concentrations in LFG samples were high enough to reach above a few tens of ppm that are 10 to 100 times higher than those in air above landfill surface. If the LFG flux values were computed using the LFG concentration data of 15 VOCs and NMHC with exit ventilation speed, the magnitude of emissions in the study area is estimated to be 8.6 and 103 ton C/yr, respectively. In the meantime, large fraction of those speciated VOC emissions is accounted for by BTEX.

Study of Selected IPCC Methodologies for the Estimation of Greenhouse Gas Emissions from a Landfill (매립지 온실 가스 배출량 산정을 위한 IPCC 선정방법별 특성 연구)

  • Jung, Sung Hoon;Hwang, Hyeon Uk;Kim, Myung Gyun;Yan, Cao Zheng;Nzioka, Antony Mutua;Tinega, Joseph Nyamoko;Kim, Young Ju
    • Resources Recycling
    • /
    • v.25 no.5
    • /
    • pp.28-35
    • /
    • 2016
  • The purpose of this study was to estimate greenhouse gas emissions using IPCC 1996 Guideline Tier 1, Good Practice Guidance 2000 Tier 2 and IPCC 2006 Guideline First Order Decay methods from landfill disposal facility. In addition, a comparative analysis evaluating the pros and cons of each method based on assumptions and default factors was considered for each method. The greenhouse gas emission computed using IPCC 1996 Guideline Tier 1 method (2,760 ton/yr) was higher than the estimation of GPG 2000 Tier 2 and IPCC 2006 Guideline First Order Decay Model which showed 1500 and 880 ton/yr respectively between 2000 and 2013.

A Study on the Effect of De-NOx Device on GHG Emissions (De-NOx 저감장치가 온실가스 배출량에 미치는 영향 연구)

  • Kim, Sungwoo;Kim, Jeonghwan;Kim, Kiho;Oh, Sang-Ki
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.212-220
    • /
    • 2018
  • As increase the number of vehicles, the issue of greenhouse gas that was emitted by them became important. As a result, greenhouse gas (GHG) regulations are being strengthened and efforts are being actively made to reduce greenhouse gas emissions in the automotive industry. In the other hand, regulations for harmful emission of vehicles have been reinforced by step. Especially, the lastly applied step, so called Euro 6, not only decreased NOx limit down to half of Euro 5 but also introduced real driving emission limit for NOx and PN. It is a challenge for manufacturers to meet the recent GHG regulation as well as the latest emission regulation. To overcome these regulations a De-NOx after-treatment system is being applied to diesel vehicles that are known emitting the lowest GHG among conventional internal combustion engines. At the time of the introduction of Euro 6 emission standard in Korea, in the domestic fuel economy certification test, some diesel vehicles emitted more $CH_4$ than Euro 5 vehicles. As a result, it was confirmed that LNT-equipped vehicles emitted a high level $CH_4$ and the level exceeded the US emission standard. In order to determine the reason, various prior literature was investigated. However, it was difficult to find a detailed study on the methane increase with LNT. In this paper, to determine whether the characteristics of vehicles equipped with LNT the affects the above issue and other greenhouse gases, 6 passenger cars were tested on several emission test modes and ambient temperatures with a environment chamber chassis dynamometer. 2 cars of these were equipped with LNT only, other 2 cars had SCR only, and LNT + SCR were applied to remaining 2 cars. The test result shown that the vehicles equipped with LNT emitted more $CH_4$ than the vehicles with SCR only. Also, $CH_4$ tended to increase as the higher acceleration of the test mode. However, as the test temperature decreases, $CH_4$ tended to decreased. $CO_2$ was not affected by kinds of De-NOx device but characteristic of the test modes.

Effect of storage temperature, period, and sawdust addition on the biochemical methane potential of cattle manure (우분의 저장온도, 저장기간, 톱밥의 혼합에 따른 메탄잠재량 변화)

  • Im, Seongwon;Kim, Sangmi;Kim, Hyu hyoung;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.29-36
    • /
    • 2021
  • In spite of the highest energy potential among all domestic organic solid wastes. the research on biogas production from cattle manure is limited. In particular, effects of organic content degradation and sawdust addition during storage on biomethane potential have never been investigated. In the present work, we investigated the change of organic content during storage of cattle manure under different temperatures (20℃ and 30℃), and its impact on biomethane potential and odor emissions. 90 days of investigation results showed that 10% of organics in terms of VS and COD were degraded at 20℃ during storage, while 30% were degraded at 30℃. This result impacted on biomethane potential, while 10-13% and 24% reduction were observed from beef and dairy cattle manure, respectively. The temperature also affected on CH4 and odor emissions during storage by 3.3-3.8 times and 29 times. The effect of sawdust on lowering down biomethane potential was found to be substantial, reducing 61-75% compared to the control.

Numerical Study of Combustion Characteristics by Pressure and Oxygen Concentration in Counter-Flow Diffusion Flame Model (대향류 확산 화염 모델에서의 압력 및 산소분율에 따른 연소 특성 변화에 관한 수치해석 연구)

  • Park, Jinje;Lee, Youngjae
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.93-103
    • /
    • 2021
  • As the seriousness and necessity of responding to climate change and reducing carbon emissions increases, countries around the world are continuing their efforts to reduce greenhouse gases. Among various efforts, research on CCUS, capturing and utilizing carbon dioxide generated when using carbon-based fuels, is actively being conducted. Studies on pressurized oxy-fuel combustion (POFC) that can be used with CCUS are also being conducted by many researchers. The purpose of this study is to analyze basic information related to the flame structure and pollutant emissions of pressurized oxy-fuel combustion. For this, a counter-flow diffusion flame model was used to analyze the combustion characteristics according to pressure and oxygen concentration. As the pressure increased, the flame temperature increased and the flame thickness decreased due to a reaction rate improvement caused by the activation of the chemical reaction. As oxygen concentration increased, both the flame temperature and the flame thickness increased due to an improvement to the reaction rate and diffusion because of a change in oxidizer momentum. Analyzing the related heat release reaction by dividing it into three sections as the oxygen concentration increased showed that the chemical reaction from the oxidizer side was subdivided into two regions according to the mixture fraction. In addition, the emission index of NO classified according to the NO formation mechanism was analyzed. The formation trend of NO according to each analysis condition was presented.

Evaluation of Planting Distance in Rice Paddies Using Deep Learning-Based Drone Imagery (딥 러닝 기반 드론 영상을 활용한 벼 포장의 재식거리 평가)

  • Hyeok-jin Bak;Dongwon Kwon;Woo-jin Im;Ji-hyeon Lee;Eun-ji Kim;Nam-jin Chung;Jung-Il Cho;Woon-Ha Hwang;Jae-Ki Chnag;Wan-Gyu Sang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.3
    • /
    • pp.154-162
    • /
    • 2024
  • In response to the increasing impact of climate change on agriculture, various cultivation technologies have been recently developed to improve agricultural productivity and reduce carbon emissions for carbon neutrality. This study presents an algorithm for estimating rice planting density in agriculture using drone-captured images and deep learning-based image analysis technology. The algorithm utilizes images collected from various paddies; these images are processed through pre-processing steps and serve as training data for the YOLOv5x deep learning model. The trained model demonstrated high precision and recall, effectively estimating the position information of rice plants in each image. By accurately estimating the position of rice plants based on the central coordinates in diverse unpaved environments, the model allowed for estimation of rice plant density in each paddy, producing values closely aligned with actual measurements. Moreover, the algorithm proposed in this study provides a novel approach for precise determination of rice planting density based on the position information of rice plants in the images. Analysis of drone footage from different regions capturing portions of paddies revealed that the developed algorithm exhibited a significant correlation (R2 =0.877) with actual planting density. This finding suggests the potential effective application of the algorithm in real-world agricultural settings. In conclusion, we believe that this research contributes to the ongoing digital transformation in agriculture by offering a valuable technology that supports the goals of enhancing efficiency, mitigating methane emissions, and achieving carbon neutrality, in response to the challenges posed by climate change.

Evaluation of Green House Gases Emissions According to Changes of Soil Water Content, Soil Temperature and Mineral N with Different Soil Texture in Pepper Cultivation (고추재배에서 토성별 토양수분, 토양온도, 무기태 질소 변화에 따른 온실가스배출 평가)

  • Kim, Gun-Yeob;Song, Beom-Heon;Roh, Kee-An;Hong, Suk-Young;Ko, Byung-Gu;Shim, Kyo-Moon;So, Kyu-ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.399-407
    • /
    • 2008
  • Importance of climate change and its impact on agriculture and environment has increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere, which had caused an increase of temperature in Earth. Greenhouse gas emissions such as methane($CH_4$) and nitrous oxide($N_2O$) in the field need to be assessed. GHGs fluxes using chamber systems in the fields(2004~2005) with pepper cultivation were monitored at the experimental plots of National Academy of Agricultural Science(NAAS), Rural Development Administration(RDA) located in Suwon city. $N_2O$ emission during pepper growing period was reduced to 74.0~82.1% in sandy loam soil compared with those in clay loam soil. Evaluating $N_2O$ emission at different levels of soil water conditions, $N_2O$ emission at -50 kPa were lowered to 13.2% in clay loam soil and 40.2% in sandy loam soil compared with those at -30 kPa. $CH_4$ emission was reduced to 45.7~61.6% in sandy loam soil compared with those in clay loam soil. Evaluating $CH_4$ at different levels of soil water conditions, $CH_4$ emission at -50 kPa was lowered to 69.6% in clay loam soil and 55.8% in sandy loam soil compared with those at -30 kPa. It implied that -50 kPa of soil water potential was effective for saving water and reducing GHG emissions. From the path analysis as to contribution factors for $N_2O$ emission, it appeared that contribution rate was in the order of mineral N(51.2%), soil temperature (25.8%), and soil moisture content(23.0%) in clay loam soil and soil moisture content(39.3%), soil temperature (36.4%), and mineral N(24.3%) in sandy loam soil.